Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Faraday Discuss ; 200: 379-395, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28640319

RESUMEN

In many parts of the world, the implementation of air quality regulations has led to significant decreases in SO2 emissions with minimal impact on NH3 emissions. In Canada and the United States, the molar ratio of NH3 : SO2 emissions has increased dramatically between 1990 and 2014. In many regions of North America, this will lead the molar ratio of NHx : SO4, where NHx is the sum of particle phase NH4+ and gas phase NH3, and SO4 is the sum of particle phase HSO4- and SO42-, to exceed 2. A thermodynamic model (E-AIM model II) is used to investigate the sensitivity of particle pH, and the gas-particle partitioning of NHx and inorganic nitrate, to the atmospheric NHx : SO4 ratio. Steep increases in pH and the gas fraction of NHx are found as NHx : SO4 varies from below 1 to above 2. The sensitivity of the gas fraction of nitrate also depends strongly on temperature. The results show that if NHx : SO4 exceeds 2, and the gas and particle phase NHx are in equilibrium, the particle pH will be above 2. Observations of the composition of particulate matter and gas phase NH3 from two field campaigns in southern Canada in 2007 and 2012 have median NHx : SO4 ratios of 3.8 and 25, respectively. These campaigns exhibited similar amounts of NH3, but very different particle phase loadings. Under these conditions, the pH values calculated using the observations as input to the E-AIM model were in the range of 1-4. The pH values were typically higher at night because the higher relative humidity increased the particle water content, diluting the acidity. The assumption of equilibration between the gas and particle phase NHx was evaluated by comparing the observed and modelled gas fraction of NHx. In general, E-AIM was able to reproduce the partitioning well, suggesting that the dominant constituents contributing to particle acidity were measured, and that the estimated pH values were realistic. These results suggest that regions of the world where the ratio of NH3 : SO2 emissions is beginning to exceed 2 on a molar basis may be experiencing rapid increases in aerosol pH of 1-3 pH units. This could have important consequences for the rates of condensed phase reactions that are acid-catalyzed.

2.
J Chromatogr A ; 1618: 460843, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31928774

RESUMEN

A rapid separation and quantitation of the stereoisomer amino sugars glucosamine, galactosamine, and mannosamine, along with muramic acid, is needed. These compounds, when their quantities are accurate, can be used to understand the origin and fate of natural organic matter (NOM) in the environment. These target molecules are biomarkers of fungi and bacteria and allow the deconvolution of microbial transformations and degradation of NOM in a wide variety of environmental matrices. Analytical methods applied to this suite of biomarkers are needed to understand carbon and nitrogen biogeochemistry with a changing global climate. Traditional separations of these analytes by gas chromatography require sample derivatization, as does reverse phase liquid chromatography. In contrast, ion chromatography can separate the analytes directly, but requires a separate analytical method to quantify muramic acid. In this work we present a direct analysis of all these molecules using hydrophilic liquid interaction chromatography. Solvent composition, buffer strength, pH, flow rate, and column temperature were optimized. The method can separate these four compounds and the biopolymeric precursor molecule N-acetylglucosamine in a single run in under 8 min with equivalent resolution to the best previously reported separations that did not require derivatization prior to analysis. Detection of the analytes was performed by both tandem and time-of-flight mass spectrometry. The method was assessed for its quantitative capabilities through i) peak area assignment, ii) check standards with ratios of the target analytes likely to be present in real samples, iii) an injection internal standard, and iv) quantitative analysis of real soil hydrolysates by external calibration and standard addition approaches. Across their expected analytical ranges the response for each analyte was highly linear with good accuracy (<25%) and precision (<15%) over three orders of magnitude. Detection limits of 20 µg L-1 were found for galactosamine and 5 µg L-1 for the remainder of the analytes, comparable to the majority of other methods reported in the literature. Overall, this new approach can directly and rapidly quantify amino sugars recovered in environmental hydrolysates.


Asunto(s)
Biomarcadores/análisis , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Ácidos Murámicos/análisis , Ácidos Murámicos/química , Calibración , Concentración de Iones de Hidrógeno , Límite de Detección , Estándares de Referencia , Reología , Suelo/química , Solventes/química , Estereoisomerismo , Temperatura
3.
J Chromatogr A ; 1252: 74-83, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22784696

RESUMEN

Two methods based on ion chromatography (IC) were developed for the detection of methyl and ethyl alkyl amines (methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA)) and NH(3)/NH(4)(+) in online atmospheric gas-particle and size-resolved particulate samples. The two IC methods were developed to analyze samples collected with an ambient ion monitor (AIM), an online gas-particle collection system, or with a Micro Orifice Uniform Deposit Impactor (MOUDI) for size-resolved particle samples. These methods enable selective and (semi-) quantitative detection of alkyl amines at ambient atmospheric concentrations (pptv and pgm(-3)) in samples where significant interferences can be expected from Na(+) and NH(4)(+), for example marine and rural air masses. Sample pre-concentration using a trace cation column enabled instrumental detection limits on the order of pmol (sub-ng) levels per sample, an improvement of up to 10(2) over current IC methods. Separation was achieved using a methanesulfonic acid gradient elution on Dionex CS12A and CS17 columns. The relative standard deviations in retention times during 3 weeks continuous (hourly) sampling campaigns ranged from 0.1 to 0.5% and 0.2 to 5% for the CS12A and CS17 across a wide dynamic range of atmospheric concentrations. Resolution of inorganic and organic cations is limited to 25min for online samples. Mass-dependent coelution of NH(4)(+)/MA/EA occurred on the CS12A column and DEA/TMA coeluted on both columns. Calibrations of ammonium show a non-linear response across the entire calibration range while all other analytes exhibit high linearity (R(2)=0.984-0.999), except for EA and TEA on the CS12A (R(2)=0.960 and 0.941, respectively). Both methods have high analytical accuracy for the nitrogenous bases ranging from 9.5 to 20% for NH(3) and <5-15% for the amines. Hourly observations of amines at Egbert, ON in October 2010 showed gaseous DMA and TMA+DEA at 1-10pptv in air, while particulate DMA and TMA+DEA were present at 0.5-4ng m(-3). A size-resolved particulate sample collected over 23h was found to contain DMA, TMA+DEA and MEA at 1.78, 8.15 and 0.03ngm(-3) mass loadings, with the amine mass enhanced in particle sizes between 100 and 1000nm. These results highlight a need for very sensitive and selective detection of methyl and ethyl amines in addition to NH(3) in continuous online monitoring strategies.


Asunto(s)
Aire/análisis , Cromatografía por Intercambio Iónico/métodos , Etilaminas/aislamiento & purificación , Metilaminas/aislamiento & purificación , Material Particulado/química , Conductividad Eléctrica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA