Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neuroimage ; 265: 119770, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462732

RESUMEN

Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.


Asunto(s)
Percepción del Habla , Habla , Adulto , Humanos , Niño , Percepción del Habla/fisiología , Percepción Auditiva , Ruido , Lenguaje
2.
PLoS Biol ; 18(8): e3000840, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845876

RESUMEN

Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia). We demonstrate that, in typical readers, cortical representation of the phrasal content of SiN relates to the degree of development of the lexical (but not sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and the ability to benefit from visual speech to represent the syllabic content of SiN account for global reading performance (i.e., speed and accuracy of lexical and sublexical reading). In individuals with dyslexia, we found preserved integration of visual speech information to optimize processing of syntactic information but not to sustain acoustic/phonemic processing. Finally, within children with dyslexia, measures of cortical representation of the phrasal content of SiN were negatively related to reading speed and positively related to the compromise between reading precision and reading speed, potentially owing to compensatory attentional mechanisms. These results clarify the nature of the relation between SiN perception and reading abilities in typical child readers and children with dyslexia and identify novel electrophysiological markers of emergent literacy.


Asunto(s)
Corteza Cerebral/fisiología , Ruido , Lectura , Habla/fisiología , Conducta , Niño , Dislexia/fisiopatología , Humanos , Modelos Lineales , Neuroimagen , Fonética
3.
Neuroimage ; 261: 119491, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908607

RESUMEN

As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.


Asunto(s)
Contracción Isométrica , Corteza Sensoriomotora , Adulto , Electromiografía , Humanos , Contracción Isométrica/fisiología , Magnetoencefalografía/métodos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Corteza Sensoriomotora/fisiología
4.
Neuroimage ; 253: 119061, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35259526

RESUMEN

Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking relates to reduced reading experience, and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with mild and severe dyslexia. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Severe dyslexia was characterized by lower rapid automatized naming (RAN) abilities compared with mild dyslexia, and phrasal CTS lateralized to the right hemisphere in children with mild dyslexia and all control groups but not in children with severe dyslexia. Finally, an alteration in phrasal CTS was uncovered in children with dyslexia compared with age-matched controls in babble noise conditions but not in other less challenging listening conditions (non-speech noise or noiseless conditions); no such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls demonstrates that such alterations are associated with reduced reading level, suggesting they are merely driven by reduced reading experience rather than a cause of dyslexia. Finally, our result of altered hemispheric lateralization of phrasal CTS in relation with altered RAN abilities in severe dyslexia is in line with a temporal sampling deficit of speech at phrasal rate in dyslexia.


Asunto(s)
Dislexia , Percepción del Habla , Niño , Humanos , Magnetoencefalografía , Ruido , Fonética , Habla/fisiología , Percepción del Habla/fisiología
5.
J Neurosci ; 39(15): 2938-2950, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30745419

RESUMEN

In multitalker backgrounds, the auditory cortex of adult humans tracks the attended speech stream rather than the global auditory scene. Still, it is unknown whether such preferential tracking also occurs in children whose speech-in-noise (SiN) abilities are typically lower compared with adults. We used magnetoencephalography (MEG) to investigate the frequency-specific cortical tracking of different elements of a cocktail party auditory scene in 20 children (age range, 6-9 years; 8 females) and 20 adults (age range, 21-40 years; 10 females). During MEG recordings, subjects attended to four different 5 min stories, mixed with different levels of multitalker background at four signal-to-noise ratios (SNRs; noiseless, +5, 0, and -5 dB). Coherence analysis quantified the coupling between the time courses of the MEG activity and attended speech stream, multitalker background, or global auditory scene, respectively. In adults, statistically significant coherence was observed between MEG signals originating from the auditory system and the attended stream at <1, 1-4, and 4-8 Hz in all SNR conditions. Children displayed similar coupling at <1 and 1-4 Hz, but increasing noise impaired the coupling more strongly than in adults. Also, children displayed drastically lower coherence at 4-8 Hz in all SNR conditions. These results suggest that children's difficulties to understand speech in noisy conditions are related to an immature selective cortical tracking of the attended speech streams. Our results also provide unprecedented evidence for an acquired cortical tracking of speech at syllable rate and argue for a progressive development of SiN abilities in humans.SIGNIFICANCE STATEMENT Behaviorally, children are less proficient than adults at understanding speech-in-noise. Here, neuromagnetic signals were recorded while healthy adults and typically developing 6- to 9-year-old children attended to a speech stream embedded in a multitalker background noise with varying intensity. Results demonstrate that auditory cortices of both children and adults selectively track the attended speaker's voice rather than the global acoustic input at phrasal and word rates. However, increments of noise compromised the tracking significantly more in children than in adults. Unexpectedly, children displayed limited tracking of both the attended voice and the global acoustic input at the 4-8 Hz syllable rhythm. Thus, both speech-in-noise abilities and cortical tracking of speech syllable repetition rate seem to mature later in adolescence.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Ruido , Percepción del Habla/fisiología , Adolescente , Adulto , Envejecimiento/psicología , Corteza Auditiva , Mapeo Encefálico , Niño , Femenino , Humanos , Magnetoencefalografía , Masculino , Relación Señal-Ruido , Adulto Joven
6.
J Cogn Neurosci ; 32(5): 877-888, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31933439

RESUMEN

Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top-down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.


Asunto(s)
Atención/fisiología , Discriminación en Psicología/fisiología , Potenciales Evocados/fisiología , Corteza Prefrontal/fisiología , Percepción del Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino , Psicolingüística , Distribución Aleatoria , Adulto Joven
7.
Neuroimage ; 184: 201-213, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30205208

RESUMEN

During connected speech listening, brain activity tracks speech rhythmicity at delta (∼0.5 Hz) and theta (4-8 Hz) frequencies. Here, we compared the potential of magnetoencephalography (MEG) and high-density electroencephalography (EEG) to uncover such speech brain tracking. Ten healthy right-handed adults listened to two different 5-min audio recordings, either without noise or mixed with a cocktail-party noise of equal loudness. Their brain activity was simultaneously recorded with MEG and EEG. We quantified speech brain tracking channel-by-channel using coherence, and with all channels at once by speech temporal envelope reconstruction accuracy. In both conditions, speech brain tracking was significant at delta and theta frequencies and peaked in the temporal regions with both modalities (MEG and EEG). However, in the absence of noise, speech brain tracking estimated from MEG data was significantly higher than that obtained from EEG. Furthemore, to uncover significant speech brain tracking, recordings needed to be ∼3 times longer in EEG than MEG, depending on the frequency considered (delta or theta) and the estimation method. In the presence of noise, both EEG and MEG recordings replicated the previous finding that speech brain tracking at delta frequencies is stronger with attended speech (i.e., the sound subjects are attending to) than with the global sound (i.e., the attended speech and the noise combined). Other previously reported MEG findings were replicated based on MEG but not EEG recordings: 1) speech brain tracking at theta frequencies is stronger with attended speech than with the global sound, 2) speech brain tracking at delta frequencies is stronger in noiseless than noisy conditions, and 3) when noise is added, speech brain tracking at delta frequencies dampens less in the left hemisphere than in the right hemisphere. Finally, sources of speech brain tracking reconstructed from EEG data were systematically deeper and more posterior than those derived from MEG. The present study demonstrates that speech brain tracking is better seen with MEG than EEG. Quantitatively, EEG recordings need to be ∼3 times longer than MEG recordings to uncover significant speech brain tracking. As a consequence, MEG appears more suited than EEG to pinpoint subtle effects related to speech brain tracking in a given recording time.


Asunto(s)
Corteza Auditiva/fisiología , Electroencefalografía , Magnetoencefalografía , Acústica del Lenguaje , Estimulación Acústica , Adulto , Mapeo Encefálico/métodos , Ritmo Delta , Femenino , Humanos , Masculino , Ruido , Ritmo Teta , Adulto Joven
8.
Neuroimage ; 199: 313-324, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170458

RESUMEN

The human brain is functionally organized into large-scale neural networks that are dynamically interconnected. Multiple short-lived states of resting-state functional connectivity (rsFC) identified transiently synchronized networks and cross-network integration. However, little is known about the way brain couplings covary as rsFC states wax and wane. In this magnetoencephalography study, we explore the synchronization structure among the spontaneous interactions of well-known resting-state networks (RSNs). To do so, we extracted modes of dynamic coupling that reflect rsFC synchrony and analyzed their spatio-temporal features. These modes identified transient, sporadic rsFC changes characterized by the widespread integration of RSNs across the brain, most prominently in the ß band. This is in line with the metastable rsFC state model of resting-state dynamics, wherein our modes fit as state transition processes. Furthermore, the default-mode network (DMN) stood out as being structured into competitive cross-network couplings with widespread DMN-RSN interactions, especially among the ß-band modes. These results substantiate the theory that the DMN is a core network enabling dynamic global brain integration in the ß band.


Asunto(s)
Ondas Encefálicas/fisiología , Conectoma/métodos , Sincronización Cortical/fisiología , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
9.
J Neurosci ; 36(5): 1596-606, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843641

RESUMEN

Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. SIGNIFICANCE STATEMENT: When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions.


Asunto(s)
Estimulación Acústica/métodos , Atención/fisiología , Corteza Auditiva/fisiología , Percepción del Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos , Masculino , Adulto Joven
10.
Pharmaceutics ; 15(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140002

RESUMEN

Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.

11.
Dev Cogn Neurosci ; 59: 101181, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549148

RESUMEN

Humans' extraordinary ability to understand speech in noise relies on multiple processes that develop with age. Using magnetoencephalography (MEG), we characterize the underlying neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5-27 years) track phrasal and syllabic structures in connected speech mixed with different types of noise. While the extraction of prosodic cues from clear speech was stable during development, its maintenance in a multi-talker background matured rapidly up to age 9 and was associated with speech comprehension. Furthermore, while the extraction of subtler information provided by syllables matured at age 9, its maintenance in noisy backgrounds progressively matured until adulthood. Altogether, these results highlight distinct behaviorally relevant maturational trajectories for the neuronal signatures of speech perception. In accordance with grain-size proposals, neuromaturational milestones are reached increasingly late for linguistic units of decreasing size, with further delays incurred by noise.


Asunto(s)
Percepción del Habla , Habla , Humanos , Adulto , Niño , Habla/fisiología , Ruido , Magnetoencefalografía , Lingüística , Percepción del Habla/fisiología
12.
Brain Commun ; 3(3): fcab186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541530

RESUMEN

Impaired speech perception in noise despite normal peripheral auditory function is a common problem in young adults. Despite a growing body of research, the pathophysiology of this impairment remains unknown. This magnetoencephalography study characterizes the cortical tracking of speech in a multi-talker background in a group of highly selected adult subjects with impaired speech perception in noise without peripheral auditory dysfunction. Magnetoencephalographic signals were recorded from 13 subjects with impaired speech perception in noise (six females, mean age: 30 years) and matched healthy subjects while they were listening to 5 different recordings of stories merged with a multi-talker background at different signal to noise ratios (No Noise, +10, +5, 0 and -5 dB). The cortical tracking of speech was quantified with coherence between magnetoencephalographic signals and the temporal envelope of (i) the global auditory scene (i.e. the attended speech stream and the multi-talker background noise), (ii) the attended speech stream only and (iii) the multi-talker background noise. Functional connectivity was then estimated between brain areas showing altered cortical tracking of speech in noise in subjects with impaired speech perception in noise and the rest of the brain. All participants demonstrated a selective cortical representation of the attended speech stream in noisy conditions, but subjects with impaired speech perception in noise displayed reduced cortical tracking of speech at the syllable rate (i.e. 4-8 Hz) in all noisy conditions. Increased functional connectivity was observed in subjects with impaired speech perception in noise in Noiseless and speech in noise conditions between supratemporal auditory cortices and left-dominant brain areas involved in semantic and attention processes. The difficulty to understand speech in a multi-talker background in subjects with impaired speech perception in noise appears to be related to an inaccurate auditory cortex tracking of speech at the syllable rate. The increased functional connectivity between supratemporal auditory cortices and language/attention-related neocortical areas probably aims at supporting speech perception and subsequent recognition in adverse auditory scenes. Overall, this study argues for a central origin of impaired speech perception in noise in the absence of any peripheral auditory dysfunction.

13.
Front Integr Neurosci ; 14: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528258

RESUMEN

Functional magnetic resonance imaging (fMRI) allowed the spatial characterization of the resting-state verbal language network (vLN). While other resting-state networks (RSNs) were matched with their electrophysiological equivalents at rest and could be spectrally defined, such correspondence is lacking for the vLN. This magnetoencephalography (MEG) study aimed at defining the spatio-spectral characteristics of the neuromagnetic intrinsic functional architecture of the vLN. Neuromagnetic activity was recorded at rest in 100 right-handed healthy adults (age range: 18-41 years). Band-limited power envelope correlations were performed within and across frequency bands (θ, α, ß, and low γ) from a seed region placed in the left Broca's area, using static orthogonalization as leakage correction. K-means clustering was used to segregate spatio-spectral clusters of resting-state functional connectivity (rsFC). Remarkably, unlike other RSNs, within-frequency long-range rsFC from the left Broca's area was not driven by one main carrying frequency but was characterized by a specific spatio-spectral pattern segregated along the ventral (predominantly θ and α) and dorsal (ß and low-γ bands) vLN streams. In contrast, spatial patterns of cross-frequency vLN functional integration were spectrally more widespread and involved multiple frequency bands. Moreover, the static intrinsic functional architecture of the neuromagnetic human vLN involved clearly left-hemisphere-dominant vLN interactions as well as cross-network interactions with the executive control network and postero-medial nodes of the DMN. Overall, this study highlighted the involvement of multiple modes of within and cross-frequency power envelope couplings at the basis of long-range electrophysiological vLN functional integration. As such, it lays the foundation for future works aimed at understanding the pathophysiology of language-related disorders.

14.
Ann Clin Transl Neurol ; 6(12): 2354-2367, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31709768

RESUMEN

OBJECTIVE: Patients with Early Infantile Epileptic Encephalopathy (EIEE) 52 have inherited, homozygous variants in the gene SCN1B, encoding the voltage-gated sodium channel (VGSC) ß1 and ß1B non-pore-forming subunits. METHODS: Here, we describe the detailed electroclinical features of a biallelic SCN1B patient with a previously unreported variant, p.Arg85Cys. RESULTS: The female proband showed hypotonia from birth, multifocal myoclonus at 2.5 months, then focal seizures and myoclonic status epilepticus (SE) at 3 months, triggered by fever. Auditory brainstem response (ABR) showed bilateral hearing loss. Epilepsy was refractory and the patient had virtually no development. Administration of fenfluramine resulted in a significant reduction in seizure frequency and resolution of SE episodes that persisted after a 2-year follow-up. The patient phenotype is more compatible with early infantile developmental and epileptic encephalopathy (DEE) than with typical Dravet syndrome (DS), as previously diagnosed for other patients with homozygous SCN1B variants. Biochemical and electrophysiological analyses of the SCN1B variant expressed in heterologous cells showed cell surface expression of the mutant ß1 subunit, similar to wild-type (WT), but with loss of normal ß1-mediated modification of human Nav 1.1-generated sodium current, suggesting that SCN1B-p.Arg85Cys is a loss-of-function (LOF) variant. INTERPRETATION: Importantly, a review of the literature in light of our results suggests that the term, early infantile developmental and epileptic encephalopathy, is more appropriate than either EIEE or DS to describe biallelic SCN1B patients.


Asunto(s)
Espasmos Infantiles/genética , Espasmos Infantiles/fisiopatología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Preescolar , Consanguinidad , Femenino , Humanos , Linaje
15.
Clin Exp Otorhinolaryngol ; 5(2): 62-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22737285

RESUMEN

OBJECTIVES: There is a classical distinction based on clinical criteria between acquired and congenital cholesteatomas. To determine if these two types of lesions show different immunohistochemical features, we have studied the expression patterns of three distinctive galectins (animal lectins implied especially in cellular proliferation and apoptosis) in both types of cholesteatomas and compared it to their expression patterns in external auditory canal skin. METHODS: Our study is based on nine acquired and eight congenital cholesteatomas, obtained from children during ear surgery. Six specimens of normal adult auditory meatal skin served as control. Specimens were analyzed by immunohistochemistry using monoclonal antibodies with galectin-1 and galectin-3, and a polyclonal antibody with galectin-7. RESULTS: We did not observe any differences in the galectin distribution pattern between congenital and acquired pediatric cholesteatomas. Compared to the control group, cholesteatomas present some particular features. There was no expression of galectin-1 and a lower expression of galectin-3 in the epithelium. Furthermore, we observed a preferentially nuclear distribution of galectin-7 in cholesteatomas, whereas it is essentially cytoplasmic in the control group. CONCLUSION: The data reported in this study suggest, on the basis of a lesser marked galectin-3 in cholesteatomas epithelium compared with an external auditory canal skin, that an immature keratinocytes population is at the origin of these lesions and that galectin-3 and galectin-7 play a part in the capacity as apoptosis modulators. Our study does not establish a difference in the galectin expressions of congenital and acquired cholesteatomas, but it constitutes however an additional argument in favor of the "undifferentiated" origin of keratinocytes in cholesteatomas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA