Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Physiol ; 227(2): 705-17, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21465476

RESUMEN

At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Oocitos/citología , Oocitos/fisiología , Animales , Señalización del Calcio/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Fosforilación , Transporte de Proteínas
2.
Proc Natl Acad Sci U S A ; 105(7): 2427-32, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18250332

RESUMEN

Imbalance of signals that control cell survival and death results in pathologies, including cancer and neurodegeneration. Two pathways that are integral to setting the balance between cell survival and cell death are controlled by lipid-activated protein kinase B (PKB)/Akt and Ca(2+). PKB elicits its effects through the phosphorylation and inactivation of proapoptotic factors. Ca(2+) stimulates many prodeath pathways, among which is mitochondrial permeability transition. We identified Ca(2+) release through inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular channels as a prosurvival target of PKB. We demonstrated that in response to survival signals, PKB interacts with and phosphorylates InsP(3)Rs, significantly reducing their Ca(2+) release activity. Moreover, phosphorylation of InsP(3)Rs by PKB reduced cellular sensitivity to apoptotic stimuli through a mechanism that involved diminished Ca(2+) flux from the endoplasmic reticulum to the mitochondria. In glioblastoma cells that exhibit hyperactive PKB, the same prosurvival effect of PKB on InsP(3)R was found to be responsible for the insensitivity of these cells to apoptotic stimuli. We propose that PKB-mediated abolition of InsP(3)-induced Ca(2+) release may afford tumor cells a survival advantage.


Asunto(s)
Apoptosis , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calcio/agonistas , Línea Celular , Chlorocebus aethiops , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Fosforilación , Serina/genética , Serina/metabolismo
3.
Biochim Biophys Acta ; 1793(6): 959-70, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19133301

RESUMEN

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a universal intracellular Ca2+-release channel. It is activated after cell stimulation and plays a crucial role in the initiation and propagation of the complex spatio-temporal Ca2+ signals that control cellular processes as different as fertilization, cell division, cell migration, differentiation, metabolism, muscle contraction, secretion, neuronal processing, and ultimately cell death. To achieve these various functions, often in a single cell, exquisite control of the Ca2+ release is needed. This review aims to highlight how protein kinases and protein phosphatases can interact with the IP3R or with associated proteins and so provide a large potential for fine tuning the Ca2+-release activity and for creating efficient Ca2+ signals in subcellular microdomains.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinasas Asociadas a rho/metabolismo
4.
Dev Biol ; 320(2): 402-13, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18621368

RESUMEN

To initiate embryo development, the sperm induces in the egg release of intracellular calcium ([Ca2+](i)). During oocyte maturation, the inositol 1,4,5-trisphosphate receptor (IP(3)R1), the channel implicated, undergoes modifications that enhance its function. We found that IP(3)R1 becomes phosphorylated during maturation at an MPM-2 epitope and that this persists until the fertilization-associated [Ca2+](i) responses cease. We also reported that maturation without ERK activity diminishes IP(3)R1 MPM-2 reactivity and [Ca2+](i) responses. Here, we show that IP(3)R1 is a novel target for Polo-like kinase1 (Plk1), a conserved M-phase kinase, which phosphorylates it at an MPM-2 epitope. Plk1 and IP(3)R1 interact in an M-phase preferential manner, and they exhibit close co-localization in the spindle/spindle poles area. This co-localization is reduced in the absence of ERK activity, as the ERK pathway regulates spindle organization and IP(3)R1 cortical re-distribution. We propose that IP(3)R1 phosphorylation by Plk1, and possibly by other M-phase kinases, underlies the delivery of spatially and temporally regulated [Ca2+](i) signals during meiosis/mitosis and cytokinesis.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Óvulo/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Señalización del Calcio , División Celular , Femenino , Receptores de Inositol 1,4,5-Trifosfato , Ratones , Fosforilación , Huso Acromático/química , Quinasa Tipo Polo 1
5.
Artículo en Inglés | MEDLINE | ID: mdl-21441584

RESUMEN

Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.


Asunto(s)
Señalización del Calcio/fisiología , Fertilización/fisiología , Mamíferos/fisiología , Animales , Humanos , Masculino , Óvulo/fisiología , Espermatozoides/fisiología
6.
Cell Calcium ; 46(1): 56-64, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19482353

RESUMEN

Egg activation and further embryo development require a sperm-induced intracellular Ca(2+) signal at the time of fertilization. Prior to fertilization, the egg's Ca(2+) machinery is therefore optimized. To this end, during oocyte maturation, the sensitivity, i.e. the Ca(2+) releasing ability, of the inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), which is responsible for most of this Ca(2+) release, markedly increases. In this study, the recently discovered specific Polo-like kinase (Plk) inhibitor BI2536 was used to investigate the role of Plk1 in this process. BI2536 inactivates Plk1 in oocytes at the early stages of maturation and significantly decreases IP(3)R1 phosphorylation at an MPM-2 epitope at this stage. Moreover, this decrease in Plk1-dependent MPM-2 phosphorylation significantly lowers IP(3)R1 sensitivity. Finally, using in vitro phosphorylation techniques we identified T(2656) as a major Plk1 site on IP(3)R1. We therefore propose that the initial increase in IP(3)R1 sensitivity during oocyte maturation is underpinned by IP(3)R1 phosphorylation at an MPM-2 epitope(s).


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Calcio/metabolismo , Línea Celular , Células Cultivadas , Simulación por Computador , Secuencia de Consenso , Epítopos/metabolismo , Femenino , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/inmunología , Ratones , Oocitos/efectos de los fármacos , Fosforilación , Quinasa Tipo Polo 1
7.
Development ; 133(21): 4355-65, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17038520

RESUMEN

A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.


Asunto(s)
Calcio/metabolismo , Fertilización/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oocitos/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Fosfo-Específicos/metabolismo , Ciclo Celular/fisiología , Activación Enzimática , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Datos de Secuencia Molecular , Oocitos/citología , Fosforilación , Alineación de Secuencia , Xenopus laevis , Cigoto/metabolismo
8.
Biochem Biophys Res Commun ; 319(3): 888-93, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15184066

RESUMEN

The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)

Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa C/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Ratones , Fosforilación , Isoformas de Proteínas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA