Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 57(9): 5258-5266, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29630370

RESUMEN

Thermoelectric properties of Cu4Mn2Te4, which is antiferromagnetic with a Néel temperature TN = 50 K and crystallizes in a spinel-related structure, have been investigated comprehensively here. The phase transition occurring at temperatures 463 and 723 K is studied by high-temperature X-ray diffraction (XRD) and differential scanning calorimetry (DSC), and its effect on thermoelectric properties is examined. Hypothetically Cu4Mn2Te4 is semiconducting according to the formula (Cu+)4(Mn2+)2(Te2-)4, while experimentally it shows p-type metallic conduction behavior, exhibiting electrical conductivity σ = 2500 Ω-1 cm-1 and Seebeck coefficient α = 20 µV K-1 at 325 K. Herein, we show that the carrier concentration and thus the thermoelectric transport properties could be further optimized through adding electron donors such as excess Mn. Discussions are made on the physical parameters contributing to the low thermal conductivity, including Debye temperature, speed of sound, and the Grüneisen parameter. As a result of simultaneously boosted power factor and reduced thermal conductivity, a moderately high zT = 0.65 at 680 K is obtained in an excess Mn\In co-added sample, amounting to 5 times that of the pristine Cu4Mn2Te4. This value ( zT = 0.65) is the best result ever reported for spinel and spinel-related chalcogenides.

2.
Inorg Chem ; 57(2): 754-767, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29266938

RESUMEN

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-As2Te3 and ß-As2Te3 binary phases and the previously unreported AsTe3 phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements. The physical properties of the glass ceramics are compared with those of both the parent glasses and the pure crystalline phases that could be successfully synthesized. SEM images coupled with Raman spectroscopy evidence a "coast-to-island" or dendriticlike microstructure with microsized crystallites. The presence of the crystallized phase results in a significant decrease in the electrical resistivity while maintaining the thermal conductivity to low values. This study demonstrates that new compounds with interesting transport properties can be obtained by recrystallization, which in turn provides a tuning parameter for the transport properties of the parent glasses.

3.
Phys Chem Chem Phys ; 20(18): 12948-12957, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29701746

RESUMEN

Distortion of the density of states by an impurity-induced resonant level has been shown to provide an effective strategy to improve the thermoelectric performance of semiconductors such as Bi2Te3, PbTe or SnTe. Here, combining first-principles calculations and transport property measurements, we demonstrate that Sn is a resonant impurity that distorts the valence band edge in p-type ß-As2Te3. This remarkable effect is characterized as a prominent, sharp peak in the electronic density of states near the Fermi level. To illustrate the particular influence of Sn on the thermopower of ß-As2Te3, the theoretical Ioffe-Pisarenko curve, computed within the Boltzmann transport theory, is compared with the experimental results obtained on three series of polycrystalline samples with substitution of Ga and Bi for As and I for Te. While Ga and I behave as conventional, rigid-band-like dopants and follow theoretical predictions, Sn results in significant deviations from the theoretical curve with a clear enhancement of the thermopower. Both electronic band structure calculations and transport property measurements provide conclusive evidence that this enhancement and hence, the good thermoelectric performances achieved at mid temperatures in ß-As2-xSnxTe3 can be attributed to a resonant level induced by Sn atoms. The possibility to induce resonant states in the electronic band structure of ß-As2Te3 opens new avenues to further optimize its thermoelectric performance.

4.
Inorg Chem ; 56(4): 2248-2257, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28177618

RESUMEN

We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As2Te3-xSex (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As2Te3-xSex crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As2Te3. The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As2Te3 exhibits very low lattice thermal conductivity κL, the substitution of Se for Te further lowers κL to 0.35 W m-1 K-1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.

5.
Inorg Chem ; 54(20): 9936-47, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26418840

RESUMEN

Metastable ß-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K. Crystallizing glassy-As2Te3 leads to multiphase samples, while ß-As2Te3 could indeed be synthesized with good phase purity (97%) by melt quenching. As expected, ß-As2Te3 reconstructively transforms into stable α-As2Te3 (C2/m, a = 14.337 Å, b = 4.015 Å, c = 9.887 Å, and ß = 95.06°) at 480 K. This ß â†’ α transformation can be seen as the displacement of part of the As atoms from their As2Te3 layers into the van der Waals bonding interspace. Upon cooling, ß-As2Te3 displacively transforms in two steps below T(S1) = 205-210 K and T(S2) = 193-197 K into a new ß'-As2Te3 allotrope. These reversible and first-order phase transitions give rise to anomalies in the resistance and in the calorimetry measurements. The new monoclinic ß'-As2Te3 crystal structure (P2(1)/m, a = 6.982 Å, b = 16.187 Å, c = 10.232 Å, ß = 103.46° at 20 K) was solved from Rietveld refinements of X-ray and neutron powder patterns collected at low temperatures. These analyses showed that the distortion undergone by ß-As2Te3 is accompanied by a 4-fold modulation along its b axis. In agreement with our experimental results, electronic structure calculations indicate that all three structures are semiconducting with the α-phase being the most stable one and the ß'-phase being more stable than the ß-phase. These calculations also confirm the occurrence of a van der Waals interspace between covalently bonded As2Te3 layers in all three structures.

6.
Nat Commun ; 13(1): 1462, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304455

RESUMEN

Intermetallics represent an important family of compounds, in which insertion of light elements (H, B, C, N) has been widely explored for decades to synthesize novel phases and promote functional materials such as permanent magnets or magnetocalorics. Fluorine insertion, however, has remained elusive so far since the strong reactivity of this atypical element, the most electronegative one, tends to produce the chemical decomposition of these systems. Here, we introduce a topochemical method to intercalate fluorine atoms into intermetallics, using perfluorocarbon reactant with covalent C-F bonds. We demonstrate the potential of this approach with the synthesis of non-stoichiometric mixed anion (Si-F) LaFeSiFx single-crystals, which are further shown to host FeSi-based superconductivity. Fluorine topochemistry on intermetallics is thus proven to be an effective route to provide functional materials where the coexistence of ionic and metallo-covalent blocks, and their interactions through inductive effects, is at the root of their functional properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA