Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 51(8): 4055-4063, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36477864

RESUMEN

The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanotecnología , ARN , Simulación de Dinámica Molecular
2.
Bioinformatics ; 36(3): 751-757, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31393558

RESUMEN

MOTIVATION: Template-based and template-free methods have both been widely used in predicting the structures of protein-protein complexes. Template-based modeling is effective when a reliable template is available, while template-free methods are required for predicting the binding modes or interfaces that have not been previously observed. Our goal is to combine the two methods to improve computational protein-protein complex structure prediction. RESULTS: Here, we present a method to identify and combine high-confidence predictions of a template-based method (SPRING) with a template-free method (ZDOCK). Cross-validated using the protein-protein docking benchmark version 5.0, our method (ZING) achieved a success rate of 68.2%, outperforming SPRING and ZDOCK, with success rates of 52.1% and 35.9% respectively, when the top 10 predictions were considered per test case. In conclusion, a statistics-based method that evaluates and integrates predictions from template-based and template-free methods is more successful than either method independently. AVAILABILITY AND IMPLEMENTATION: ZING is available for download as a Github repository (https://github.com/weng-lab/ZING.git). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Benchmarking , Biología Computacional , Proteínas
3.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361773

RESUMEN

The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5' end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA-thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.


Asunto(s)
Anticoagulantes/síntesis química , Aptámeros de Nucleótidos/síntesis química , G-Cuádruplex , Oligonucleótidos/síntesis química , Trombina/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacología , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/farmacología , Secuencia de Bases , Sitios de Unión , Coagulación Sanguínea/efectos de los fármacos , Dendrímeros/química , Humanos , Cinética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/metabolismo , Unión Proteica , Termodinámica , Trombina/antagonistas & inhibidores , Trombina/metabolismo
4.
Proteins ; 88(8): 1050-1054, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31994784

RESUMEN

We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.


Asunto(s)
Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
5.
RNA Biol ; 15(4-5): 537-553, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28812932

RESUMEN

A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.


Asunto(s)
Adenosina/metabolismo , Código Genético , Inosina/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , Adenosina/genética , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Emparejamiento Base , Desaminación , Eucariontes/genética , Eucariontes/metabolismo , Evolución Molecular , Inosina/genética , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
6.
Nucleic Acids Res ; 44(13): 6036-45, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27307604

RESUMEN

Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNA(Glu) UUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon-anticodon interaction during ribosome binding.


Asunto(s)
ARN de Transferencia/genética , ARN/genética , Ribosomas/genética , Tiouridina/análogos & derivados , Anticodón/genética , Codón/genética , ADN Forma B/genética , Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/genética , ARN/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Tiouridina/metabolismo
7.
ACS Chem Biol ; 19(2): 348-356, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38252964

RESUMEN

A-to-I editing catalyzed by adenosine deaminase acting on RNAs impacts numerous physiological and biochemical processes that are essential for cellular functions and is a big contributor to the infectivity of certain RNA viruses. The outcome of this deamination leads to changes in the eukaryotic transcriptome functionally resembling A-G transitions since inosine preferentially pairs with cytosine. Moreover, hyper-editing or multiple A to G transitions in clusters were detected in measles virus. Inosine modifications either directly on viral RNA or on cellular RNA can have antiviral or pro-viral repercussions. While many of the significant roles of inosine in cellular RNAs are well understood, the effects of hyper-editing of A to I on viral polymerase activity during RNA replication remain elusive. Moreover, biological strategies such as molecular cloning and RNA-seq for transcriptomic interrogation rely on RT-polymerase chain reaction with little to no emphasis placed on the first step, reverse transcription, which may reshape the sequencing results when hypermodification is present. In this study, we systematically explore the influence of inosine modification, varying the number and position of inosines, on decoding outcomes using three different reverse transcriptases (RTs) followed by standard Sanger sequencing. We find that inosine alone or in clusters can differentially affect the RT activity. To gain structural insights into the accommodation of inosine in the polymerase site of HIV-1 reverse transcriptase (HIV-1-RT) and how this structural context affects the base pairing rules for inosine, we performed molecular dynamics simulations of the HIV-1-RT. The simulations highlight the importance of the protein-nucleotide interaction as a critical factor in deciphering the base pairing behavior of inosine clusters. This effort sets the groundwork for decrypting the physiological significance of inosine and linking the fidelity of reverse transcriptase and the possible diverse transcription outcomes of cellular RNAs and/or viral RNAs where hyper-edited inosines are present in the transcripts.


Asunto(s)
ARN Viral , Transcripción Reversa , Emparejamiento Base , ARN Viral/genética , Inosina/análisis , Inosina/química , Inosina/genética , Adenosina Desaminasa/genética
8.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559076

RESUMEN

Post-transcriptional modifications in RNA can significantly impact their structure and function. In particular, transfer RNAs (tRNAs) are heavily modified, with around 100 different naturally occurring nucleotide modifications contributing to codon bias and decoding efficiency. Here, we describe our efforts to investigate the impact of RNA modifications on the structure and stability of tRNA Phenylalanine (tRNA Phe ) from S. cerevisiae using molecular dynamics (MD) simulations. Through temperature replica exchange MD (T-REMD) studies, we explored the unfolding pathway to understand how RNA modifications influence the conformational dynamics of tRNA Phe , both in the presence and absence of magnesium ions (Mg 2+ ). We observe that modified nucleotides in key regions of the tRNA establish a complex network of hydrogen bonds and stacking interactions which is essential for tertiary structure stability of the tRNA. Furthermore, our simulations show that modifications facilitate the formation of ion binding sites on the tRNA. However, high concentrations of Mg 2+ ions can stabilize the tRNA tertiary structure in the absence of modifications. Our findings illuminate the intricate interactions between modifications, magnesium ions, and RNA structural stability.

9.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38014227

RESUMEN

Synthetic DNA motifs form the basis of nucleic acid nanotechnology, and their biochemical and biophysical properties determine their applications. Here, we present a detailed characterization of switchback DNA, a globally left-handed structure composed of two parallel DNA strands. Compared to a conventional duplex, switchback DNA shows lower thermodynamic stability and requires higher magnesium concentration for assembly but exhibits enhanced biostability against some nucleases. Strand competition and strand displacement experiments show that component sequences have an absolute preference for duplex complements instead of their switchback partners. Further, we hypothesize a potential role for switchback DNA as an alternate structure in sequences containing short tandem repeats. Together with small molecule binding experiments and cell studies, our results open new avenues for switchback DNA in biology and nanotechnology.

10.
Front Chem ; 12: 1330378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312345

RESUMEN

The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.

11.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260517

RESUMEN

Alternative splicing (AS) of Exon 11 of the Insulin Receptor ( INSR ) is highly regulated and disrupted in several human disorders. To better understand INSR exon 11 AS regulation, splicing activity of an INSR exon 11 minigene reporter was measured across a gradient of the AS regulator muscleblind-like 1 protein (MBNL1). The RNA-binding protein Fox-1 (RBFOX1) was added to determine its impact on MBNL1-regulated splicing. The role of the RBFOX1 UGCAUG binding site within intron 11 was assessed across the MBNL1 gradient. Mutating the UGCAUG motif inhibited RBFOX1 regulation of exon 11 and had the unexpected effect of reducing MBNL1 regulation of this exon. Molecular dynamics simulations showed that exon 11 and the adjacent RNA adopts a dynamically stable conformation. Mutation of the RBFOX1 binding site altered RNA structure and dynamics, while a mutation that created an optimal MBNL1 binding site at the RBFOX1 site shifted the RNA back to wild type. An antisense oligonucleotide (ASO) was used to confirm the structure in this region of the pre-mRNA. This example of intronic mutations shifting pre-mRNA structure and dynamics to modulate splicing suggests RNA structure and dynamics should be taken into consideration for AS regulation and therapeutic interventions targeting pre-mRNA.

12.
Nat Commun ; 15(1): 6636, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107287

RESUMEN

Synthetic DNA motifs form the basis of nucleic acid nanotechnology. The biochemical and biophysical properties of these motifs determine their applications. Here, we present a detailed characterization of switchback DNA, a globally left-handed structure composed of two parallel DNA strands. Compared to a conventional duplex, switchback DNA shows lower thermodynamic stability and requires higher magnesium concentration for assembly but exhibits enhanced biostability against some nucleases. Strand competition and strand displacement experiments show that component sequences have an absolute preference for duplex complements instead of their switchback partners. Further, we hypothesize a potential role for switchback DNA as an alternate structure in sequences containing short tandem repeats. Together with small molecule binding experiments and cell studies, our results open new avenues for switchback DNA in biology and nanotechnology.


Asunto(s)
ADN , Conformación de Ácido Nucleico , Termodinámica , ADN/química , ADN/metabolismo , Magnesio/química , Magnesio/metabolismo , Nanotecnología/métodos , Humanos
13.
bioRxiv ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39211226

RESUMEN

Spinocerebellar ataxias (SCAs) are a genetically heterogenous group of devastating neurodegenerative conditions for which clinical care currently focuses on managing symptoms. Across these diseases there is an unmet need for therapies that address underlying disease mechanisms. We utilised the shared CAG repeat expansion mutation causative for a large subgroup of SCAs, to develop a novel disease-gene independent and mechanism agnostic small molecule screening approach to identify compounds with therapeutic potential across multiple SCAs. Using this approach, we identified the FDA approved microtubule inhibitor Colchicine and a novel CAG-repeat binding compound that reduce expression of disease associated transcripts across SCA1, 3 and 7 patient derived fibroblast lines and the Atxn1 154Q/2Q SCA1 mouse model in a repeat selective manner. Furthermore, our lead candidate rescues dysregulated alternative splicing in Atxn1 154Q/2Q mice. This work provides the first example of small molecules capable of targeting the underlying mechanism of disease across multiple CAG SCAs.

14.
bioRxiv ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778282

RESUMEN

Myotonic dystrophy is a multisystemic neuromuscular disease caused by either a CTG repeat expansion in DMPK (DM1) or a CCTG repeat expansion in CNBP (DM2). Transcription of the expanded alleles produces toxic gain-of-function RNA that sequester the MBNL family of alternative splicing regulators into ribonuclear foci, leading to pathogenic mis-splicing. There are currently no approved treatments that target the root cause of disease which is the production of the toxic expansion RNA molecules. In this study, using our previously established HeLa DM1 repeat selective screening platform, we identified the natural product quercetin as a selective modulator of toxic RNA levels. Quercetin treatment selectively reduced toxic RNA levels and rescued MBNL dependent mis-splicing in DM1 and DM2 patient derived cell lines and in the HSALR transgenic DM1 mouse model where rescue of myotonia was also observed. Based on our data and its safety profile for use in humans, we have identified quercetin as a priority disease-targeting therapeutic lead for clinical evaluation for the treatment of DM1 and DM2.

15.
Nat Commun ; 14(1): 631, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746949

RESUMEN

Base stacking interactions between adjacent bases in DNA and RNA are important for many biological processes and in biotechnology applications. Previous work has estimated stacking energies between pairs of bases, but contributions of individual bases has remained unknown. Here, we use a Centrifuge Force Microscope for high-throughput single molecule experiments to measure stacking energies between adjacent bases. We found stacking energies strongest between purines (G|A at -2.3 ± 0.2 kcal/mol) and weakest between pyrimidines (C|T at -0.5 ± 0.1 kcal/mol). Hybrid stacking with phosphorylated, methylated, and RNA nucleotides had no measurable effect, but a fluorophore modification reduced stacking energy. We experimentally show that base stacking can influence stability of a DNA nanostructure, modulate kinetics of enzymatic ligation, and assess accuracy of force fields in molecular dynamics simulations. Our results provide insights into fundamental DNA interactions that are critical in biology and can inform design in biotechnology applications.


Asunto(s)
Ácidos Nucleicos , Conformación de Ácido Nucleico , Termodinámica , ADN/química , ARN/química
16.
J Phys Chem B ; 126(6): 1168-1177, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35119848

RESUMEN

The 2-methylthio-modification (ms2-) of N6-threonylcarbonyladenosine (t6A37) at position-37 (ms2t6A37) in tRNAUUULys3 provides the needed stability between the tRNA anticodon and the human insulin mRNA codon AAG during translation, as determined by molecular dynamics simulation. Single-nucleoside polymorphisms of the human gene for the enzyme, Cdkal1 that post-transcriptionally modifies t6A37 to ms2t6A37 in tRNAUUULys3, correlate with type 2 diabetes mellitus. Without the ms2-modification, tRNAUUULys3 is incapable of correctly translating the insulin mRNA AAG codon for lysine at the site of protease cleavage between the A-chain and the C-peptide. By enhancing anticodon/codon cross-strand stacking, the ms2-modification adds stability through van der Waals interactions and dehydration of the ASL loop and cavity of the anticodon/codon minihelix but does not add hydrogen bonding of any consequence. Thus, the modifying enzyme Cdkal1, by adding a crucial ms2-group to tRNAUUULys3-t6A37, facilitates the decoding of the AAG codon and enables human pancreatic islets to correctly translate insulin mRNA.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nucleósidos , Anticodón/genética , Química Física , Codón/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Lisina/genética , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , Termodinámica
17.
Genes (Basel) ; 13(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328093

RESUMEN

RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.


Asunto(s)
Simulación de Dinámica Molecular , ARN , Proteínas , ARN/química , ARN/genética
18.
iScience ; 23(12): 101866, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33319183

RESUMEN

Geranylation is a hydrophobic modification discovered in several bacteria tRNAs with the function of promoting codon bias during translation. However, why nature selects this C10-geranyl group remains a question. We conduct synthesis, UV-thermal denaturation, and molecular simulation studies in RNA duplexes and reveal possible reasons behind this natural selection. Among methyl-(C1), dimethylallyl-(C5), geranyl-(C10), and farnesyl-(C15) modified 2-thiouridines, only geranyl-group promotes U:G over U:A pair. Molecular simulation shows all the modified terpene groups point to the minor groove of RNA duplexes. The discrimination between U:G and U:A pairs derives from the difference in hydrogen bonding and interactions of the chain with the hydrophobic area in the minor groove. Geranyl group has perfect length to discriminate U:G and U:A pairs, whereas the others are either too long or too short to achieve the same behavior. This work indicates that geranyl group cannot be replaced by other terpene groups in promoting codon-specificity.

19.
mBio ; 11(4)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665276

RESUMEN

Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.


Asunto(s)
AdnB Helicasas/antagonistas & inhibidores , Mycobacterium/efectos de los fármacos , Empalme de Proteína/efectos de los fármacos , Zinc/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , AdnB Helicasas/química , AdnB Helicasas/genética , Escherichia coli/genética , Inteínas/genética , Mycobacterium/enzimología , Mycobacterium/genética , Procesamiento Proteico-Postraduccional
20.
J Mol Biol ; 432(4): 913-929, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31945376

RESUMEN

Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.


Asunto(s)
Codón/genética , Citidina/análogos & derivados , ARN de Transferencia/metabolismo , Biología Computacional , Cristalografía por Rayos X , Citidina/metabolismo , Inosina/metabolismo , Nucleósidos/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA