RESUMEN
The correct use of dry powder inhalers by the patients is essential to ensure effective treatment and management of the disease. The purpose of the work was to assess the consequence of inhaler misuse in terms of emitted dose and aerodynamic parameters. One reservoir multidose device (Foster-NEXThaler®) and one pre-dosed device (Relvar-Ellipta®), both sharing the "open, inhale and close" procedure, were the subject of the study. NEXThaler activated at different degrees of inclination showed a consistent dose delivery for both the drugs included in the formulation (beclometasone dipropionate/formoterol fumarate). Contrary, Ellipta showed a decrease of the emitted dose for both fluticasone furoate (FluF) and vilanterol trifenatate (VT) when the device was operated facing downward (-14% at 45° and -22% at 90°). Similarly, the delivered dose of NEXThaler was unaffected by an accidental fall, while Ellipta released FluF and VT doses 50% lower than control values. The presence of the dose protector in NEXThaler offers the advantage of retaining the powder if the inhaler is subjected to incorrect manipulations. Both products proved to be reliable in double activation. Finally, simulation exhalation conditions impaired, although not significantly, the aerodynamic profile of the two products.
Asunto(s)
Beclometasona , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Administración por Inhalación , Fumarato de Formoterol , Inhaladores de Polvo Seco , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , BroncodilatadoresRESUMEN
It has long been accepted that suspension pressurized metered-dose inhalers (pMDIs) must be shaken if a correct dose is to be delivered, if not, it will usually be higher than the label claim. The purpose of this work was to investigate the influence of the device being unshaken, shaken and after a period of delay in pMDI actuation on the Fine Particle Mass (<5 µm), Extra Fine Particle Mass (<2 µm) and MMAD. Solution and suspension commercial pMDIs containing one, two or three components were used in the study. Most of the suspension pMDIs produced variable amounts of respirable size drug following the shake-fire delays tested in terms of the label claim dose. The effect was even more critical if the inhaler was not shaken and the FPM was found to be between -82â¯% for Symbicort and 363â¯% for Ventolin compared with the control values. In the case of MMAD measurements, Seretide and Serzyl inhalers showed the largest change from around 3⯵m to 4.2-5.1⯵m when not shaken. Conversely, the FPM and MMAD for the solution aerosols remained unchanged whether or not they were shaken or when a progressive increase in the delay in actuation after shaking was employed.
Asunto(s)
Broncodilatadores , Inhaladores de Dosis Medida , Administración por Inhalación , Aerosoles , Albuterol , Suspensiones , Tamaño de la Partícula , Diseño de EquipoRESUMEN
This work illustrates the development of a dry inhalation powder of cyclosporine-A for the prevention of rejection after lung transplantation and for the treatment of COVID-19. The influence of excipients on the spray-dried powder's critical quality attributes was explored. The best-performing powder in terms of dissolution time and respirability was obtained starting from a concentration of ethanol of 45% (v/v) in the feedstock solution and 20% (w/w) of mannitol. This powder showed a faster dissolution profile (Weibull dissolution time of 59.5 min) than the poorly soluble raw material (169.0 min). The powder exhibited a fine particle fraction of 66.5% and an MMAD of 2.97 µm. The inhalable powder, when tested on A549 and THP-1, did not show cytotoxic effects up to a concentration of 10 µg/mL. Furthermore, the CsA inhalation powder showed efficiency in reducing IL-6 when tested on A549/THP-1 co-culture. A reduction in the replication of SARS-CoV-2 on Vero E6 cells was observed when the CsA powder was tested adopting the post-infection or simultaneous treatment. This formulation could represent a therapeutic strategy for the prevention of lung rejection, but is also a viable approach for the inhibition of SARS-CoV-2 replication and the COVID-19 pulmonary inflammatory process.
RESUMEN
To overcome some of the shortfalls of the types of dissolution testing currently used for pulmonary products, a new custom-built dissolution apparatus has been developed. For inhalation products, the main in vitro characterisation required by pharmacopoeias is the deposition of the active pharmaceutical ingredient in an impactor to estimate the dose delivered to the target site, i.e., the lung. Hence, the collection of the respirable dose (<5 µm) also appears to be an essential requirement for the study of the dissolution rate of particles, because it results as being a relevant parameter for the pharmacological action of the powder. In this sense, dissolution studies could become a complementary test to the routine testing of inhaled formulation delivered dose and aerodynamic performance, providing a set of data significant for product quality, efficacy and/or equivalence. In order to achieve the above-mentioned objectives, an innovative dissolution apparatus (RespiCell™) suitable for the dissolution of the respirable fraction of API deposited on the filter of a fast screening impactor (FSI) (but also of the entire formulation if desirable) was designed at the University of Parma and tested. The purpose of the present work was to use the RespiCell dissolution apparatus to compare and discriminate the dissolution behaviour after aerosolisation of various APIs characterised by different physico-chemical properties (hydrophilic/lipophilic) and formulation strategies (excipients, mixing technology).