Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Open Res Eur ; 1: 122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645172

RESUMEN

Hydrogen embrittlement can cause a dramatic deterioration of the mechanical properties of high-strength metallic materials. Despite decades of experimental and modelling studies, the exact underlying mechanisms behind hydrogen embrittlement remain elusive. To unlock understanding of the mechanism and thereby help mitigate the influence of hydrogen and the associated embrittlement, it is essential to examine the interactions of hydrogen with structural defects such as grain boundaries, dislocations and stacking faults. Atom probe tomography (APT) can, in principle, analyse hydrogen located specifically at such microstructural features but faces strong challenges when it comes to charging specimens with hydrogen or deuterium. Here, we describe three different workflows enabling hydrogen/deuterium charging of site-specific APT specimens: namely cathodic, plasma and gas charging. All the experiments in the current study have been performed on a model twinning induced plasticity steel alloy. We discuss in detail the caveats of the different approaches in order to help future research efforts and facilitate further studies of hydrogen in metals. Our study demonstrates successful cathodic and gas charging, with the latter being more promising for the analysis of the high-strength steels at the core of our work.

2.
Patterns (N Y) ; 2(2): 100192, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33659909

RESUMEN

Mass spectrometry is a widespread approach used to work out what the constituents of a material are. Atoms and molecules are removed from the material and collected, and subsequently, a critical step is to infer their correct identities based on patterns formed in their mass-to-charge ratios and relative isotopic abundances. However, this identification step still mainly relies on individual users' expertise, making its standardization challenging, and hindering efficient data processing. Here, we introduce an approach that leverages modern machine learning technique to identify peak patterns in time-of-flight mass spectra within microseconds, outperforming human users without loss of accuracy. Our approach is cross-validated on mass spectra generated from different time-of-flight mass spectrometry (ToF-MS) techniques, offering the ToF-MS community an open-source, intelligent mass spectra analysis.

3.
Ultramicroscopy ; 194: 15-24, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30036832

RESUMEN

Atom probe tomography is known for its accurate compositional analysis at the nanoscale. However, the patterns created by successive hits on the single particle detector during experiments often contain complementary information about the specimen's crystallography, including structure and orientation. This information remains in most cases unexploited because it is, up to now, retrieved predominantly manually. Here, we propose an approach combining image analysis techniques for feature selection and deep-learning to automatically interpret the patterns. Application of unsupervised machine learning techniques allows to build and train a deep neural network, based on a library generated from theoretically known crystallographic angular relationships. This approach enables direct interpretation of the detector hit maps, as shown here on the example of numerous pure-Al, and is robust enough to function under various conditions of base temperature, pulsing mode and pulse fraction. We benchmark our approach against recent attempts to automate the pattern identification via Hough-transform and discuss the current limitations of our approach. This new automated approach renders crystallographic atom probe tomography analysis more efficient, feature-sensitive, robust, user-independent and reliable. With that, deep-learning algorithms show a great potential to give access to combined atom probe crystallographic and compositional analysis to a large community of users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA