Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 15: 446, 2014 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-24909751

RESUMEN

BACKGROUND: The olive mouse Abrothrix olivacea is a cricetid rodent of the subfamily Sigmodontinae that inhabits a wide range of contrasting environments in southern South America, from aridlands to temperate rainforests. Along its distribution, it presents different geographic forms that make the olive mouse a good focal case for the study of geographical variation in response to environmental variation. We chose to characterize the kidney transcriptome because this organ has been shown to be associated with multiple physiological processes, including water reabsorption. RESULTS: Transcriptomes of thirteen kidneys from individuals from Argentina and Chile were sequenced using Illumina technology in order to obtain a kidney reference transcriptome. After combining the reads produced for each sample, we explored three assembly strategies to obtain the best reconstruction of transcripts, TrinityNorm and DigiNorm, which include its own normalization algorithms for redundant reads removal, and Multireads, which simply consist on the assembly of the joined reads. We found that Multireads strategy produces a less fragmented assembly than normalization algorithms but recovers fewer number of genes. In general, about 15000 genes were annotated, of which almost half had at least one coding sequence reconstructed at 99% of its length. We also built a list of highly expressed genes, of which several are involved in water conservation under laboratory conditions using mouse models. CONCLUSION: Based on our assembly results, Trinity's in silico normalization is the best algorithm in terms of cost-benefit returns; however, our results also indicate that normalization should be avoided if complete or nearly complete coding sequences of genes are desired. Given that this work is the first to characterize the transcriptome of any member of Sigmodontinae, a subfamily of cricetid rodents with about 400 living species, it will provide valuable resources for future ecological and evolutionary genomic analyses.


Asunto(s)
Arvicolinae/genética , Perfilación de la Expresión Génica , Riñón/metabolismo , Transcriptoma , Animales , Biología Computacional , Bases de Datos Genéticas , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta
2.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724183

RESUMEN

The study of South American camelids and their domestication is a highly debated topic in zooarchaeology. Identifying the domestic species (alpaca and llama) in archaeological sites based solely on morphological data is challenging due to their similarity with respect to their wild ancestors. Using genetic methods also presents challenges due to the hybridization history of the domestic species, which are thought to have extensively hybridized following the Spanish conquest of South America that resulted in camelids slaughtered en masse. In this study, we generated mitochondrial genomes for 61 ancient South American camelids dated between 3,500 and 2,400 years before the present (Early Formative period) from two archaeological sites in Northern Chile (Tulán-54 and Tulán-85), as well as 66 modern camelid mitogenomes and 815 modern mitochondrial control region sequences from across South America. In addition, we performed osteometric analyses to differentiate big and small body size camelids. A comparative analysis of these data suggests that a substantial proportion of the ancient vicuña genetic variation has been lost since the Early Formative period, as it is not present in modern specimens. Moreover, we propose a domestication hypothesis that includes an ancient guanaco population that no longer exists. Finally, we find evidence that interbreeding practices were widespread during the domestication process by the early camelid herders in the Atacama during the Early Formative period and predating the Spanish conquest.


Asunto(s)
Camélidos del Nuevo Mundo/genética , ADN Antiguo/análisis , Domesticación , Animales , Animales Domésticos/genética , Animales Salvajes/genética , Arqueología/métodos , Chile , ADN Mitocondrial/genética , Variación Genética , Genoma Mitocondrial , Hibridación Genética
3.
Genome Biol ; 21(1): 159, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616020

RESUMEN

BACKGROUND: Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS: Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS: The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.


Asunto(s)
Evolución Biológica , Camélidos del Nuevo Mundo/genética , Domesticación , Introgresión Genética , Genoma , Adaptación Biológica , Animales , Femenino , Masculino , Filogeografía , Selección Genética , América del Sur
4.
Front Genet ; 10: 445, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244880

RESUMEN

The vicuña (Vicugna vicugna) is the most representative wild ungulate of the high Andes of South America with two recognized morphological subspecies, V. v. mensalis in the north and V. v. vicugna in the south of its distribution. Current vicuña population size (460,000-520,000 animals) is the result of population recovery programs established in response to 500 years of overexploitation. Despite the vicuña's ecosystemic, economic and social importance, studies about their genetic variation and history are limited and geographically restricted. Here, we present a comprehensive assessment of the genetic diversity of vicuña based on samples collected throughout its distribution range corresponding to eleven localities in Peru and five in Chile representing V. v. mensalis, plus four localities each in Argentina and Chile representing V. v. vicugna. Analysis of mitochondrial DNA and microsatellite markers show contrasting results regarding differentiation between the two vicuña types with mitochondrial haplotypes supporting subspecies differentiation, albeit with only a few mutational steps separating the two subspecies. In contrast, microsatellite markers show that vicuña genetic variation is best explained as an isolation by distance pattern where populations on opposite ends of the distribution present different allelic compositions, but the intermediate populations present a variety of alleles shared by both extreme forms. Demographic characterization of the species evidenced a simultaneous and strong reduction in the effective population size in all localities supporting the existence of a unique, large ancestral population (effective size ∼50,000 individuals) as recently as the mid-Holocene. Furthermore, the genetic variation observed across all localities is better explained by a model of gene flow interconnecting them rather than only by genetic drift. Consequently, we propose space "continuous" Management Units for vicuña as populations exhibit differentiation by distance and spatial autocorrelation linked to sex biased dispersal instead of population fragmentation or geographical barriers across the distribution.

5.
Front Genet ; 9: 487, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483307

RESUMEN

The domestication of wild vicuña and guanaco by early pre-Inca cultures is an iconic example of wildlife management and domestication in the Americas. Although domestic llamas and alpacas were clearly selected for key, yet distinct, phenotypic traits, the relative patterns and direction of selection and domestication have not been confirmed using genetic approaches. However, the detailed archaeological records from the region suggest that domestication was a process carried out under significant control and planning, which would have facilitated coordinated and thus extremely effective selective pressure to achieve and maintain desired phenotypic traits. Here we link patterns of sequence variation in two well-characterised genes coding for colour variation in vertebrates and interpret the results in the context of domestication in guanacos and vicuñas. We hypothesise that colour variation in wild populations of guanacos and vicunas were strongly selected against. In contrast, variation in coat colour variation in alpaca was strongly selected for and became rapidly fixed in alpacas. In contrast, coat colour variants in llamas were of less economic value, and thus were under less selective pressure. We report for the first time the full sequence of MC1R and 3 exons of ASIP in 171 wild specimens from throughout their distribution and which represented a range of commonly observed colour patterns. We found a significant difference in the number of non-synonymous substitutions, but not synonymous substitutions among wild and domestics species. The genetic variation in MC1R and ASIP did not differentiate alpaca from llama due to the high degree of reciprocal introgression, but the combination of 11 substitutions are sufficient to distinguish domestic from wild animals. Although there is gene flow among domestic and wild species, most of the non-synonymous variation in MC1R and ASIP was not observed in wild species, presumably because these substitutions and the associated colour phenotypes are not effectively transmitted back into wild populations. Therefore, this set of substitutions unequivocally differentiates wild from domestic animals, which will have important practical application in forensic cases involving the poaching of wild vicuñas and guanacos. These markers will also assist in identifying and studying archaeological remains pre- and post-domestication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA