Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 45(16): 4480-4483, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796988

RESUMEN

We present a simple technique to characterize the spatial non-uniformity of a liquid-crystal on silicon (LCOS) spatial light modulator (SLM). It is based on illuminating the display with a wavelength out of the operation range, so there is a significant reflection at the output surface. As a consequence, a Gires-Tournois interferometer is directly created, without any alignment requirement and insensitive to vibrations. The beam reflected at the output surface is the reference beam, while the beam reflected at the silicon backplane is modulated with the addressed gray level in order to quantitatively derive its deformation. We provide an experimental demonstration using a LCOS-SLM designed to operate in the near-infrared range but illuminated with visible light.

2.
Opt Express ; 27(10): 14472-14486, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163896

RESUMEN

In this work, a geometric phase liquid-crystal diffraction grating based on the optimal triplicator design is realized, i.e., a phase-only profile that generates three diffraction orders with equal intensity and maximum diffraction efficiency. We analyze the polarization properties of this special diffraction grating and then use embedded spiral phases to design geometric phase vortex diffraction gratings. Finally, the fabrication of a two-dimensional version of such a design using a micro-patterned half-wave retarder is demonstrated, where the phase distribution is encoded as the orientation of the fast axis of the retarder. This proof-of-concept element is made of liquid crystal on BK7 substrate where the orientation of the LC is controlled via photoalignment, using a commercially available fabrication facility. Experimental results demonstrate the parallel generation of vortex beams with different topological charge and different states of polarization.

3.
Opt Lett ; 43(14): 3277-3280, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004485

RESUMEN

We present a universal design and proof-of-concept of a tunable linear retarder of uniform wavelength response in a broad spectral range. It consists of two half-wave retarders (HWR) between two quarter-wave retarders (QWRs), where the uniform retardance can be tuned continuously by simply rotating one of the HWRs. A proof-of-concept of this design is built by using commercially available Fresnel rhomb retarders that provide retardation with almost wavelength uniformity in the visible and near infrared from 450 to 1550 nm. The design is universal, since other achromatic QWRs and HWRs could also be employed. The system is experimentally demonstrated to control the state of polarization of a supercontinuum laser.

4.
Opt Express ; 25(20): 23773-23783, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041328

RESUMEN

We report the realization of polarization sensitive split lens configurations. While split lenses can be used to easily generate different types of controlled structured light patterns, their realization has been limited so far to scalar beams. Here we propose and experimentally demonstrate their generalization to vectorial split lenses, leading to light patterns with customized intensity and state of polarization. We demonstrate how these polarization split lenses can be experimentally implemented by means of an optical system using two liquid crystal spatial light modulators, each one phase modulating one orthogonal polarization component. As a result, we demonstrate the experimental generation of vectorial beams with different shapes generated with these dual polarization split lenses. Excellent experimental results are provided in each case. The proposed technique is a simple method to generate structured light beams with polarization diversity, with potential applications in polarimetry, customized illuminators or quantum optics.

5.
Opt Express ; 22(21): 25866-79, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401619

RESUMEN

Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.


Asunto(s)
Luz , Cristales Líquidos/química , Óptica y Fotónica/instrumentación , Silicio/química , Birrefringencia , Iluminación , Modelos Teóricos
6.
Appl Opt ; 53(25): 5585-92, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25321350

RESUMEN

A polarimeter architecture is presented based on a birefringent grating displayed onto a parallel-aligned liquid crystal (LC) on silicon display (PAL-LCoS). The system is compact and flexible, since the size of the image can be adjusted by means of the period of the grating. The LCoS grating permits simultaneously measuring two orthogonal states of polarization (SOPs). By adding a wave plate, different couples of orthogonal SOPs can be detected. First, a basic proof of concept is presented using one quarter-wave and one half-wave plate with fixed retardances, which permit measuring the six SOPs classically used in polarimetry (linear states at 0°, 45°, 90°, and 135°, and R and L circular states). Next, the system is made fully programmable by incorporating a variable LC retarder (LCR). The LCR orientation and retardance values are optimized by means of the condition number indicator, in order to provide equivalent optimal accuracy. Experimental results of calibration images and test images are presented, showing the potentials of this architecture.

7.
Sci Rep ; 8(1): 11263, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050141

RESUMEN

We present an experimental method, based on the use of dynamic split-lens configurations, useful for the trapping and spatial control of microparticles through the photophoretic force. In particular, the concept of split-lens configurations is exploited to experimentally create customized and reconfigurable three-dimensional light structures, in which carbon coated glass microspheres, with sizes in a range of 63-75 µm, can be captured. The generation of light spatial structures is performed by properly addressing phase distributions corresponding to different split-lens configurations onto a spatial light modulator (SLM). The use of an SLM allows a dynamic variation of the light structures geometry just by modifying few control parameters of easy physical interpretation. We provide some examples in video format of particle trapping processes. What is more, we also perform further spatial manipulation, by controlling the spatial position of the particles in the axial direction, demonstrating the generation of reconfigurable three-dimensional photophoretic traps for microscopic manipulation of absorbing particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA