Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 99(12): 3284-3305, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510528

RESUMEN

The brain undergoes rapid, dramatic, and reversible transitioning between states of wakefulness and unconsciousness during natural sleep and in pathological conditions such as hypoxia, hypotension, and concussion. Transitioning can also be induced pharmacologically using general anesthetic agents. The effect is selective. Mobility, sensory perception, memory formation, and awareness are lost while numerous housekeeping functions persist. How is selective transitioning accomplished? Classically a handful of brainstem and diencephalic "arousal nuclei" have been implicated in driving brain-state transitions on the grounds that their net activity systematically varies with brain state. Here we used transgenic targeted recombination in active populations mice to label neurons active during wakefulness with one reporter and neurons active during pentobarbital-induced general anesthesia with a second, contrasting reporter. We found 'wake-on' and 'anesthesia-on' neurons in widely distributed regions-of-interest, but rarely encountered neurons labeled with both reporters. Nearly all labeled neurons were either wake-on or anesthesia-on. Thus, anesthesia-on neurons are not unique to the few nuclei discovered to date whose activity appears to increase during anesthesia. Rather neuronal populations selectively active during anesthesia are located throughout the brain where they likely play a causative role in transitioning between wakefulness and anesthesia. The widespread neuronal suppression reported in prior comparisons of the awake and anesthetized brain in animal models and noninvasive imaging in humans reflects only net differences. It misses the ubiquitous presence of neurons whose activity increases during anesthesia. The balance in recruitment of anesthesia-on versus wake-on neuronal populations throughout the brain may be a key driver of regional and global vigilance states. [Correction added on September 22, 2021, after first online publication: Due to a typesetting error, the abstract text was cut off. This has been corrected now.].


Asunto(s)
Anestesia , Encéfalo , Anestesia/métodos , Animales , Encéfalo/fisiología , Ratones , Neuronas , Inconsciencia/inducido químicamente , Vigilia
2.
Exp Neurol ; 357: 114169, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817130

RESUMEN

Although general anesthesia is normally induced by systemic dosing, an anesthetic state can be induced in rodents by microinjecting minute quantities of GABAergic agents into the brainstem mesopontine tegmental anesthesia area (MPTA). Correspondingly, lesions to the MPTA render rats relatively insensitive to standard anesthetic doses delivered systemically. Using a chemogenetic approach we have identified and characterized a small subpopulation of neurons restricted to the MPTA which, when excited, render the animal anesthetic by sensorimotor (immobility) and electroencephalographic (EEG) criteria. These "effector-neurons" do not express GABAAδ-Rs, the likely target of GABAergic anesthetics. Rather, we report a distinct sub-population of nearby MPTA neurons which do. During anesthetic induction these likely excite the effector-neurons by disinhibition. Within the effector population ~ 70% appear to be glutamatergic, ~30% GABAergic and ~ 40% glycinergic. Most are projection neurons that send ascending or descending axons to distant targets associated with the individual functional components of general anesthesia: atonia, analgesia, amnesia, and loss-of-consciousness.


Asunto(s)
Anestésicos , Estado de Conciencia , Anestesia General , Anestésicos/efectos adversos , Animales , Estado de Conciencia/fisiología , Neuronas , Ratas , Ratas Wistar , Inconsciencia/inducido químicamente
3.
Neuroscience ; 432: 188-204, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32109530

RESUMEN

The mesopontine tegmental anesthesia area (MPTA) is a small brainstem nucleus that, when exposed to minute quantities of GABAA receptor agonists, induces a state of general anesthesia. In addition to immobility and analgesia this state is accompanied by widespread suppression of neural activity in the cerebral cortex and high delta-band power in the electroencephalogram. Collectively, MPTA neurons are known to project to a variety of forebrain targets which are known to relay to the cortex in a highly distributed manner. Here we ask whether ascending projections of individual MPTA neurons collateralize to several of these cortical relay nuclei, or access only one. Using rats, contrasting retrograde tracers were microinjected pairwise on one side into three ascending relays: the basal forebrain, the zona incerta-lateral hypothalamus and the intralaminar thalamic nuclear group. In addition, in separate animals, each target was microinjected bilaterally. MPTA neurons were then identified as being single-or double-labeled, indicating projection to one target nucleus or collateralization to both. Results indicated that double-labeling was rare, occurring on average in only 1.3% of the neurons sampled. The overwhelming majority of individual MPTA neurons showed specific connectivity, contributing to only one of the major ascending pathways, either ipsilaterally or contralaterally, but not bilaterally. This architecture would permit particular functional aspects of anesthetic loss-of-consciousness to be driven by specific subpopulations of MPTA neurons.


Asunto(s)
Anestésicos , Estado de Conciencia , Animales , Corteza Cerebral , Vías Nerviosas , Neuronas , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA