RESUMEN
The regulation of blastocyst implantation in the uterus is orchestrated by the ovarian hormones estrogen and progesterone. These hormones act via their nuclear receptors to direct the transcriptional activity of the endometrial compartments and create a defined period in which the uterus is permissive to embryo implantation termed the "window of receptivity". Additional members of the nuclear receptor family have also been described to have a potential role in endometrial function. Much of what we know about the function of these nuclear receptors during implantation we have learned from the use of mouse models. Transgenic murine models with targeted gene ablation have allowed us to identify a complex network of paracrine signaling between the endometrial epithelium and stroma. While some of the critical molecules have been identified, the mechanism underlying the intricate communication between endometrial compartments during the implantation window has not been fully elucidated. Defining this mechanism will help identify markers of a receptive uterine environment, ultimately providing a useful tool to help improve the fertility outlook for reproductively challenged couples. The aim of this review is to outline our current understanding of how nuclear receptors and their effector molecules regulate blastocyst implantation in the endometrium.