Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487086

RESUMEN

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Asunto(s)
Miocimia , Animales , Ratones , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potasio Kv.1.2
2.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799979

RESUMEN

The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-ß (Aß), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer's disease (AD) and Parkinson's disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aß42 and α-syn monomers to self-assemble into larger ß-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Membranas Mitocondriales/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Phaeophyceae/química , alfa-Sinucleína/toxicidad , Péptidos beta-Amiloides/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos/química , Membranas Mitocondriales/patología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/metabolismo , Algas Marinas/química , alfa-Sinucleína/metabolismo
3.
Neurobiol Dis ; 94: 245-58, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27388936

RESUMEN

The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.


Asunto(s)
Proteínas de Drosophila/metabolismo , Neuronas Motoras/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Animales , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenotipo
4.
Adv Exp Med Biol ; 863: 117-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26092629

RESUMEN

Parkinson's disease (PD) is a common motor neurodegenerative disorder with multifactorial etiology that is an increasing burden on our aging society. PD is characterized by nigrostriatal degeneration which might involve oxidative stress, α-synuclein (αS) aggregation, dysregulation of redox metal homeostasis and neurotoxicity. Although the exact cause remains unknown, both genetic and environmental factors have been implicated. Among the various environmental factors tea consumption has attracted increasing interest, as besides being one of the most consumed beverages in the world, tea contains specific polyphenols which can play an important role in delaying the onset or halting the progression of PD. Green and black teas are rich sources of polyphenols, the most abundant being epigallocatechin-3-gallate (EGCG) and theaflavins. There is now consistent mechanistic data on the neuroprotective and neuroregenerative effects of tea polyphenols, indicating that they do not just possess anti-oxidant or anti-chelating properties but may directly interfere with aggregation of the αS protein and modulate intracellular signalling pathways, both in vitro and in animal models. EGCG in green tea has been by far the most studied compound and therefore future investigations should address more the effects of other polyphenols, especially theaflavins in black tea. Nevertheless, despite significant data on their potential neuroprotective effects, clinical studies are still very limited and to date only EGCG has reached phase II trials. This review collates the current knowledge of tea polyphenols and puts into perspective their potential to be considered as nutraceuticals that target various pathologies in PD.


Asunto(s)
Antioxidantes , Biflavonoides , Catequina/análogos & derivados , Fármacos Neuroprotectores , Enfermedad de Parkinson , Polifenoles , Té/química , Antioxidantes/química , Antioxidantes/uso terapéutico , Biflavonoides/química , Biflavonoides/uso terapéutico , Catequina/química , Catequina/uso terapéutico , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/prevención & control , Polifenoles/química , Polifenoles/uso terapéutico , alfa-Sinucleína/metabolismo
5.
Biochim Biophys Acta ; 1828(11): 2532-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23817009

RESUMEN

Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aß42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aß42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Membranas Mitocondriales/metabolismo , Polifenoles/farmacología , Línea Celular Tumoral , Humanos , Membranas Mitocondriales/efectos de los fármacos , Permeabilidad , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
6.
Biochim Biophys Acta ; 1818(11): 2502-10, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22634381

RESUMEN

Cumulative evidence now suggests that the abnormal aggregation of the protein α-synuclein (αS) is a critical factor in triggering neurodegeneration in Parkinson's disease (PD). In particular, a fundamental pathogenetic mechanism appears to involve targeting of neuronal membranes by soluble oligomeric intermediates of αS, leading to their disruption or permeabilisation. Therefore, a model assay was developed in which fluorophore-loaded unilamellar vesicles were permeabilised by soluble oligomers, the latter formed by aggregation of human recombinant αS protein. The αS oligomers induced an impairment of membrane integrity similar to that of the pore-forming bacterial peptide gramicidin. The lipid vesicle permeabilisation assay was then utilised to screen 11 natural polyphenolic compounds, 8 synthetic N'-benzylidene-benzohydrazide compounds and black tea extract for protection against membrane damage by wild-type and mutant (A30P, A53T) synuclein aggregates. A select group of potent inhibitory compounds included apigenin, baicalein, morin, nordihydroguaiaretic acid, and black tea extract. Structure-activity analysis further suggests that a 5,7-dihydroxy-chromen-4-one moiety appears to be favourable for the inhibition reaction. In conclusion, we have identified a group of polyphenols that can effectively hinder membrane damage by αS aggregates. These may serve as a viable source of lead compounds for the development and design of novel therapeutic agents in PD.


Asunto(s)
Lípidos de la Membrana/metabolismo , Polifenoles/farmacología , alfa-Sinucleína/toxicidad , Permeabilidad de la Membrana Celular , Técnicas In Vitro , Cinética , Liposomas , Espectrometría de Fluorescencia , Relación Estructura-Actividad
7.
FEMS Yeast Res ; 13(8): 755-68, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24028488

RESUMEN

In previous studies, we observed that aspirin, a promising cancer-preventive agent, induces apoptosis in mitochondrial manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae cells grown aerobically in ethanol medium. In this study, we show that aspirin-induced apoptosis is associated with a significant increase in mitochondrial and cytosolic O2 ·- and oxidation of mitochondrial NAD(P)H. A concomitant rise in the level of cytosolic CuZnSOD activity failed to compensate for mitochondrial MnSOD deficiency. However, an observed increase in activity of Escherichia coli FeSOD targeted to the mitochondrial matrix of the MnSOD-deficient yeast cells, markedly decreased aspirin-induced accumulation of mitochondrial O2 ·-, significantly increased the mitochondrial NAD(P)H level and rescued the apoptotic phenotype. Indeed, recombinant yeast cells expressing E. coli FeSOD behaved in a similar manner to the parent wild-type yeast cells with native mitochondrial MnSOD activity. Wild-type cells consistently showed a decrease in mitochondrial O2 ·- and an increase in mitochondrial NAD(P)H levels in the presence of aspirin in ethanol medium. In fact, in wild-type cells, our studies supported an antioxidant action of aspirin. Taken together, our results indicate that a pro-oxidant effect of aspirin occurring predominantly in cells with compromised mitochondrial redox balance may be enough to overcome antioxidant defences resulting in apoptosis, as observed in MnSOD-deficient yeast cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Aspirina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NADP/metabolismo , Superóxidos/metabolismo , Citosol/metabolismo , Activación Enzimática , Escherichia coli/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/metabolismo
8.
Neurobiol Aging ; 123: 200-207, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549973

RESUMEN

Genetic risk for amyotrophic lateral sclerosis (ALS) is highly elevated in genetic isolates, like the island population of Malta in the south of Europe, providing a unique opportunity to investigate the genetics of this disease. Here we characterize the clinical phenotype and genetic profile of the largest series of Maltese ALS patients to date identified throughout a 5-year window. Cases and controls underwent neuromuscular assessment and analysis of rare variants in ALS causative or risk genes following whole-genome sequencing. Potentially damaging variants or repeat expansions were identified in more than 45% of all patients. The most commonly affected genes were ALS2, DAO, SETX and SPG11, an infrequent cause of ALS in Europeans. We also confirmed a significant association between ATXN1 intermediate repeats and increased disease risk. Damaging variants in major ALS genes C9orf72, SOD1, TARDBP and FUS were however either absent or rare in Maltese ALS patients. Overall, our study underscores a population that is an outlier within Europe and one that represents a high percentage of genetically explained cases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Predisposición Genética a la Enfermedad , Humanos , Predisposición Genética a la Enfermedad/genética , Estudios de Asociación Genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Malta/epidemiología , Fenotipo , Proteína C9orf72/genética , Superóxido Dismutasa-1/genética , Mutación/genética , ADN Helicasas/genética , ARN Helicasas/genética , Enzimas Multifuncionales/genética , Proteínas/genética
9.
Biophys J ; 102(7): 1646-55, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22500765

RESUMEN

Aggregation of α-synuclein is involved in the pathogenesis of Parkinson's disease (PD). Studies of in vitro aggregation of α-synuclein are rendered complex because of the formation of a heterogeneous population of oligomers. With the use of confocal single-molecule fluorescence techniques, we demonstrate that small aggregates (oligomers) of α-synuclein formed from unbound monomeric species in the presence of organic solvent (DMSO) and iron (Fe(3+)) ions have a high affinity to bind to model membranes, regardless of the lipid-composition or membrane curvature. This binding mode contrasts with the well-established membrane binding of α-synuclein monomers, which is accompanied with α-helix formation and requires membranes with high curvature, defects in the lipid packing, and/or negatively charged lipids. Additionally, we demonstrate that membrane-bound α-synuclein monomers are protected from aggregation. Finally, we identified compounds that potently dissolved vesicle-bound α-synuclein oligomers into monomers, leaving the lipid vesicles intact. As it is commonly believed that formation of oligomers is related PD progression, such compounds may provide a promising strategy for the design of novel therapeutic drugs in Parkinson's disease.


Asunto(s)
Multimerización de Proteína , Espectrometría de Fluorescencia/métodos , Liposomas Unilamelares/metabolismo , alfa-Sinucleína/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dimetilsulfóxido/química , Transferencia Resonante de Energía de Fluorescencia , Enfermedad de Parkinson/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Liposomas Unilamelares/química , alfa-Sinucleína/química
10.
Neurol Res ; 44(7): 571-582, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34986754

RESUMEN

Coronavirus disease (COVID-19) arising from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection has caused a worldwide pandemic, mainly owing to its highly virulent nature stemming from a very strong and highly efficacious binding to the angiotensin converting enzyme-2 (ACE2) receptor. As the pandemic developed, increasing numbers of COVID-19 patients with neurological manifestations were reported, strongly suggesting a causal relationship. Indeed, direct invasion of SARS-CoV-2 viral particles into the brain can occur through the cribriform plate via olfactory nerves, passage through a damaged blood-brain-barrier, or via haematogenic infiltration of infected leukocytes. Neurological complications range from potentially fatal encephalopathy and stroke, to the onset of headaches and dizziness, which despite their apparent innocuous presentation may still imply a more sinister pathology. Here, we summarize the most recent knowledge on the neurological presentations typically being associated with COVID-19, whilst providing potential pathophysiological mechanisms. The latter are centered upon hypoxic brain injury, generation of a cytokine storm with attendant immune-mediated damage, and a prothrombotic state. A better understanding of both the neuroinvasive properties of SARS-CoV-2 and the neurological complications of COVID-19 will be important to improve patient outcomes.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , COVID-19/complicaciones , Humanos , Enfermedades del Sistema Nervioso/etiología , Pandemias , SARS-CoV-2 , Accidente Cerebrovascular/etiología
11.
Neuroscience ; 491: 32-42, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314252

RESUMEN

Increasing evidence points to the involvement of cell types other than motor neurons in both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the predominant motor neuron disease in adults and infants, respectively. The contribution of glia to ALS pathophysiology is well documented. Studies have since focused on evaluating the contribution of glia in SMA. Here, we made use of the Drosophila model to ask whether the survival motor neuron (Smn) protein, the causative factor for SMA, is required selectively in glia. We show that the specific loss of Smn function in glia during development reduced survival to adulthood but did not affect motoric performance or neuromuscular junction (NMJ) morphology in flies. In contrast, gain rather than loss of ALS-linked TDP-43, FUS or C9orf72 function in glia induced significant defects in motor behaviour in addition to reduced survival. Furthermore, glia-specific gain of TDP-43 function caused both NMJ defects and muscle atrophy. Smn together with Gemins 2-8 and Unrip, form the Smn complex which is indispensable for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). We show that glial-selective perturbation of Smn complex components or disruption of key snRNP biogenesis factors pICln and Tgs1, induce deleterious effects on adult fly viability but, similar to Smn reduction, had no negative effect on neuromuscular function. Our findings suggest that the role of Smn in snRNP biogenesis as part of the Smn complex is required in glia for the survival of the organism, underscoring the importance of glial cells in SMA disease formation.


Asunto(s)
Atrofia Muscular Espinal , Envejecimiento , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Neuronas Motoras/fisiología , Neuroglía/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
12.
Eur J Hum Genet ; 30(7): 856-859, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34616013

RESUMEN

Amyotrophic lateral sclerosis (ALS) is frequently caused by mutations in the SOD1 gene. Here, we report the first SOD1 variant in Malta, an archipelago of three inhabited islands in southern Europe. We describe a patient with a sporadic form of ALS living on the island of Gozo in which the heterozygous SOD1 c.272A>C; p.(Asp91Ala) variant was detected. The patient had a late onset (79 years), sensory impairments and rapid disease progression culminating in respiratory failure. ALS has not yet developed in any of the three additional family members in which the D91A variant was identified. None of the healthy controls from the Maltese population were found to carry this variant. This report underscores the high prevalence of the D91A variant in Europe, despite the presence of a North-South gradient in its frequency, and confirms that this variant can be associated with dominant cases in Mediterranean countries.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Europa (Continente) , Heterocigoto , Humanos , Mutación , Superóxido Dismutasa-1/genética
13.
J Neurochem ; 117(5): 868-78, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21426349

RESUMEN

Aggregated α-synuclein (α-syn) is a characteristic pathological finding in Parkinson's disease and related disorders, such as dementia with Lewy bodies. Recent evidence suggests that α-syn oligomers represent the principal neurotoxic species; however, the pathophysiological mechanisms are still not well understood. Here, we studied the neurophysiological effects of various biophysically-characterized preparations of α-syn aggregates on excitatory synaptic transmission in autaptic neuronal cultures. Nanomolar concentrations of large α-syn oligomers, generated by incubation with organic solvent and Fe(3+) ions, were found to selectivity enhance evoked α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor, but not NMDA-receptor, mediated synaptic transmission within minutes. Moreover, the analysis of spontaneous AMPA-receptor-mediated miniature synaptic currents revealed an augmented frequency. These results collectively indicate that large α-syn oligomers alter both pre- and post-synaptic mechanisms of AMPA-receptor-mediated synaptic transmission. The augmented excitatory synaptic transmission may directly contribute to nerve cell death in synucleinopathies. Indeed, already low micromolar glutamate concentrations were found to be toxic in primary cultured neurons incubated with large α-syn oligomers. In conclusion, large α-syn oligomers enhance both pre- and post-synaptic AMPA-receptor-mediated synaptic transmission, thereby aggravating intracellular calcium dyshomeostasis and contributing to excitotoxic nerve cell death in synucleinopathies.


Asunto(s)
Hierro/farmacología , Receptores AMPA/fisiología , Transmisión Sináptica/fisiología , alfa-Sinucleína/farmacología , Animales , Astrocitos/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Microscopía Confocal , Técnicas de Placa-Clamp , Receptores AMPA/efectos de los fármacos , Proteínas Recombinantes/farmacología , Transmisión Sináptica/efectos de los fármacos , Sales de Tetrazolio , Tiazoles , alfa-Sinucleína/biosíntesis
14.
Chem Phys Lipids ; 234: 105010, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33227292

RESUMEN

Human islet amyloid polypeptide (hIAPP), otherwise known as amylin, is a 37-residue peptide hormone which is reported to be a common factor in protein misfolding disorders such as type-2 diabetes mellitus, Alzheimer's disease and Parkinson's disease, due to deposition of insoluble hIAPP amyloid in the pancreas and brain. Multiple studies point to the importance of the peptide's interaction with biological membranes and the cytotoxicity of hIAPP species. Here, we discuss the aggregation pathways of hIAPP amyloid fibril formation and focus on the complex interplay between membrane-mediated assembly of hIAPP and the associated mechanisms of membrane damage caused by the peptide species. Mitochondrial membranes, which are unique in their lipid composition, are proposed as prime targets for the early intracellular formation of hIAPP toxic entities. We suggest that future studies should include more physiologically-relevant and in-cell studies to allow a more accurate model of in vivo interactions. Finally, we underscore an urgent need for developing effective therapeutic strategies aimed at hindering hIAPP-phospholipid interactions.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Lípidos/química , Deficiencias en la Proteostasis/metabolismo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Agregado de Proteínas , Conformación Proteica
15.
Artículo en Inglés | MEDLINE | ID: mdl-33821701

RESUMEN

Objective: Amyotrophic lateral sclerosis (ALS) is a mostly sporadic neurodegenerative disease. The role of environmental factors has been extensively investigated but associations remain controversial. Considering that a substantial proportion of adult life is spent at work, identifying occupations and work-related exposures is considered an effective way to detect factors that increase ALS risk. This process may be further facilitated in population isolates due to environmental and genetic homogeneity. Our study investigated occupations and occupational exposures potentially associated with ALS risk in the isolated island population of Malta, using a case-control study design. Methods: Patients with ALS and randomly identified matched controls (1:1) were recruited throughout a four-year window, from 2017 through 2020. Data on educational level, residence, main occupation, smoking, and alcohol history were collected. Results: We found that compared to controls (44.4%), a higher percentage (73.7%) of ALS patients reported a blue-collar job as their main occupation (OR 2.04, 95% CI 1.2-3.72; p = 0.0072). Through regression analysis, craft and related trades occupations such as carpentry and construction (ISCO-08 major group 7), were found to be positively associated with ALS, with patients in this occupational category found to be more prone to develop bulbar-onset ALS (p = 0.0297). Overall, patients with ALS reported a significantly higher exposure to work-related strenuous physical activity (OR 2.35, 95% CI 1.53-3.59; p = 0.0002). Conclusion: Our findings suggest that manual workers particularly those working in the carpentry and construction industries have an increased ALS risk, possibly due to a history of intense or sustained physical activity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Exposición Profesional , Adulto , Esclerosis Amiotrófica Lateral/epidemiología , Estudios de Casos y Controles , Humanos , Malta , Exposición Profesional/efectos adversos , Ocupaciones , Factores de Riesgo
16.
Eur J Hum Genet ; 29(4): 604-614, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33414559

RESUMEN

Genetic isolates are compelling tools for mapping genes of inherited disorders. The archipelago of Malta, a sovereign microstate in the south of Europe is home to a geographically and culturally isolated population. Here, we investigate the epidemiology and genetic profile of Maltese patients with amyotrophic lateral sclerosis (ALS), identified throughout a 2-year window. Cases were largely male (66.7%) with a predominant spinal onset of symptoms (70.8%). Disease onset occurred around mid-age (median age: 64 years, men; 59.5 years, female); 12.5% had familial ALS (fALS). Annual incidence rate was 2.48 (95% CI 1.59-3.68) per 100,000 person-years. Male-to-female incidence ratio was 1.93:1. Prevalence was 3.44 (95% CI 2.01-5.52) cases per 100,000 inhabitants on 31st December 2018. Whole-genome sequencing allowed us to determine rare DNA variants that change the protein-coding sequence of ALS-associated genes. Interestingly, the Maltese ALS patient cohort was found to be negative for deleterious variants in C9orf72, SOD1, TARDBP or FUS genes, which are the most commonly mutated ALS genes globally. Nonetheless, ALS-associated repeat expansions were identified in ATXN2 and NIPA1. Variants predicted to be damaging were also detected in ALS2, DAO, DCTN1, ERBB4, SETX, SCFD1 and SPG11. A total of 40% of patients with sporadic ALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene, whilst the genetic cause of two thirds of fALS cases could not be pinpointed to known ALS genes or risk loci. This warrants further studies to elucidate novel genes that cause ALS in this unique population isolate.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Sitios Genéticos , Mutación , Aislamiento Reproductivo , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/epidemiología , Femenino , Frecuencia de los Genes , Humanos , Masculino , Malta , Persona de Mediana Edad , Prevalencia , Factores Sexuales
18.
Sci Rep ; 10(1): 17733, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082392

RESUMEN

Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-ß, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.


Asunto(s)
Amiloide/metabolismo , Transferasas de Carboxilo y Carbamoilo/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptidos beta-Amiloides/metabolismo , Cardiolipinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Potencial de la Membrana Mitocondrial , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
19.
Biochim Biophys Acta Biomembr ; 1862(2): 183064, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521630

RESUMEN

Misfolding and aggregate formation by the tau protein has been closely related with neurotoxicity in a large group of human neurodegenerative disorders, which includes Alzheimer's disease. Here, we investigate the membrane-active properties of tau oligomers on mitochondrial membranes, using minimalist in vitro model systems. Thus, exposure of isolated mitochondria to oligomeric tau evoked a disruption of mitochondrial membrane integrity, as evidenced by a combination of organelle swelling, efflux of cytochrome c and loss of the mitochondrial membrane potential. Tau-induced mitochondrial dysfunction occurred independently of the mitochondrial permeability transition (mPT) pore complex. Notably, mitochondria were rescued by pre-incubation with 10-N-nonyl acridine orange (NAO), a molecule that specifically binds cardiolipin (CL), the signature phospholipid of mitochondrial membranes. Additionally, NAO prevented direct binding of tau oligomers to isolated mitochondria. At the same time, tau proteins exhibited high affinity to CL-enriched membranes, whilst permeabilisation of lipid vesicles also strongly correlated with CL content. Intriguingly, using single-channel electrophysiology, we could demonstrate the formation of non-selective ion-conducting tau nanopores exhibiting multilevel conductances in mito-mimetic bilayers. Taken together, the data presented here advances a scenario in which toxic cytosolic entities of tau protein would target mitochondrial organelles by associating with their CL-rich membrane domains, leading to membrane poration and compromised mitochondrial structural integrity.


Asunto(s)
Cardiolipinas/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Proteínas tau/farmacología , Humanos , Membranas Mitocondriales/metabolismo , Nanoporos , Permeabilidad/efectos de los fármacos , Unión Proteica , Multimerización de Proteína
20.
Protein Pept Lett ; 16(3): 230-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19275735

RESUMEN

Prion diseases are neurodegenerative disorders characterized by a hallmark event involving the post-translational misfolding of the normal cellular prion protein (PrPC) into an infectious and toxic protease-resistant conformation (PrPSc). Studies on identification of the pathological prion species and on the mechanisms involved in triggering neuronal death have been hampered by the heterogeneous nature of PrPSc aggregates. The use of synthetic PrP-derived peptides has made possible exploration of the relationship between amino acid sequence, biophysical structure and biological effect. Indeed, most PrP-derived peptides replicate the fundamental aspects of full-length PrPSc, including: a beta-sheet-rich structure; destabilization of lipid membranes; intracellular calcium dysregulation; increased oxidative stress; activation of pro-apoptotic signaling pathways; and, more contentiously, neurotoxicity dependent upon endogenous PrPC expression. Crucially, in vivo toxicity of the important PrP-peptides, e.g. PrP(106-126) and PrP(118-135), has additionally been established. Therefore, the use of prion-derived peptides facilitates the development of therapeutic strategies based on small-molecule inhibitors of aggregation and other pharmacological agents that protect against the lethal effect of these peptides in vivo.


Asunto(s)
Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Enfermedades por Prión/fisiopatología , Priones/química , Priones/metabolismo , Animales , Humanos , Fragmentos de Péptidos/genética , Priones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA