Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 5(17): 8505-15, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23905883

RESUMEN

To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near-infrared (NIR)-active polymorph of lead phthalocyanine (PbPc) on a relevant electrode for solar cell applications. We studied the effect of different substrate modification layers on PbPc thin film structure as a function of thickness and deposition rate (rdep). We characterized crystallinity and orientation by grazing incidence X-ray diffraction (GIXD) and in situ X-ray reflectivity (XRR) and correlated these data to the performance of bilayer solar cells. When deposited onto a self-assembled monolayer (SAM) or a molybdenum oxide (MoO3) buffer layer, the crystallinity of the PbPc films improves with thickness. The transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher content of the NIR-active phase is enhanced at low rdep, thereby leading to solar cells that exhibit a higher maximum in short circuit current density (JSC) for thinner donor layers. The insertion of a CuI layer induces the formation of strongly textured, crystalline PbPc layers with a vertically homogeneous structure. Solar cells based on these templated donor layers show a variation of JSC with thickness that is independent of rdep. Consequently, without decreasing rdep we could achieve JSC=10 mA/cm2, yielding a bilayer solar cell with a peak external quantum efficiency (EQE) of 35% at 900 nm, and an overall power conversion efficiency (PCE) of 2.9%.


Asunto(s)
Rayos Infrarrojos , Compuestos Organometálicos/química , Energía Solar , Cristalización , Molibdeno/química , Óxidos/química
2.
J Phys Chem Lett ; 3(17): 2395-400, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-26292121

RESUMEN

The structure of titanyl phthalocyanine (TiOPc) thin films is correlated with photovoltaic properties of planar heterojunction solar cells by pairing different TiOPc polymorph donor layers with C60 as an acceptor. Solvent annealing and the insertion of two different templating layers, namely 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and CuI, prove to be effective methods to control the TiOPc thin film structure. The crystal phase of TiOPc thin films was identified by combining X-ray reflectivity (XRR) measurements with spectroscopic techniques, including absorption and micro-Raman measurements. Implementation of a donor layer with an absorption spectrum extending into the near-infrared (NIR) led to solar cells with external quantum efficiencies (EQEs) above 27% from λ = 600 - 890 nm, with the best device yielding a power conversion efficiency (PCE) of 2.6%. Our results highlight the need to understand the relationship between processing parameters and thin film structure, as these have important consequences on device performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA