Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(4): 046701, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566862

RESUMEN

We investigate magnetization dynamics of Mn_{2}Au/Py (Ni_{80}Fe_{20}) thin film bilayers using broadband ferromagnetic resonance (FMR) and Brillouin light scattering spectroscopy. Our bilayers exhibit two resonant modes with zero-field frequencies up to almost 40 GHz, far above the single-layer Py FMR. Our model calculations attribute these modes to the coupling of the Py FMR and the two antiferromagnetic resonance (AFMR) modes of Mn_{2}Au. The coupling strength is in the order of 1.6 T nm at room temperature for nm-thick Py. Our model reveals the dependence of the hybrid modes on the AFMR frequencies and interfacial coupling as well as the evanescent character of the spin waves that extend across the Mn_{2}Au/Py interface.

2.
Phys Rev Lett ; 121(7): 077203, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169064

RESUMEN

Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room temperature by means of the Brillouin light scattering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand their properties when externally pumped magnons are transferred towards the condensed state via two distinct channels: a multistage Kolmogorov-Zakharov cascade of the weak-wave turbulence or a one-step kinetic instability process. Our main result is that opening the kinetic instability channel leads to the formation of a much denser magnon condensate and to a stronger magnon supercurrent compared to the cascade mechanism alone.

3.
Phys Rev Lett ; 118(23): 237201, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644646

RESUMEN

An ensemble of magnons, quanta of spin waves, can be prepared as a Bose gas of weakly interacting quasiparticles. Furthermore, the thermalization of the overpopulated magnon gas through magnon-magnon scattering processes, which conserve the number of particles, can lead to the formation of a Bose-Einstein condensate at the bottom of a spin-wave spectrum. However, magnon-phonon scattering can significantly modify this scenario and new quasiparticles are formed-magnetoelastic bosons. Our observations of a parametrically populated magnon gas in a single-crystal film of yttrium iron garnet by means of wave-vector-resolved Brillouin light scattering spectroscopy evidence a novel condensation phenomenon: A spontaneous accumulation of hybrid magnetoelastic bosonic quasiparticles at the intersection of the lowest magnon mode and a transversal acoustic wave.

4.
Nat Commun ; 5: 3452, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24613901

RESUMEN

Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.


Asunto(s)
Fenómenos Químicos , Gases/química , Calor , Transición de Fase , Algoritmos , Cinética , Modelos Teóricos , Fotones , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA