Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(20): 6353-8, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941408

RESUMEN

DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.


Asunto(s)
Membrana Dobles de Lípidos/química , Modelos Moleculares , Serina/genética , Transducción de Señal/fisiología , Sensación Térmica/fisiología , Secuencias de Aminoácidos/genética , Dicroismo Circular , Dimerización , Simulación de Dinámica Molecular , Conformación Proteica , Serina/química , Espectrometría de Fluorescencia
2.
J Mol Biol ; 431(5): 1016-1024, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738600

RESUMEN

To address the mechanism of thermosensing and its implications for molecular engineering, we previously deconstructed the functional components of the bacterial thermosensor DesK, a histidine kinase with a five-span transmembrane domain that detects temperature changes. The system was first simplified by building a sensor that consists of a single chimerical transmembrane segment that retained full sensing capacity. Genetic and biophysical analysis of this minimal sensor enabled the identification of three modular components named determinants of thermodetection (DOTs). Here we combine and tune the DOTs to determine their contribution to activity. A transmembrane zipper represents the master DOT that drives a reversible and activating dimerization through the formation of hydrogen bonds. Our findings provide the mechanism and insights to construct a synthetic transmembrane helix based on a poly-valine scaffold that harbors the DOTs and regulates the activity. The construct constitutes a modular switch that may be exploited in biotechnology and genetic circuitry.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Sensación Térmica/fisiología , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Enlace de Hidrógeno , Proteínas de la Membrana/metabolismo , Unión Proteica/fisiología , Transducción de Señal/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA