Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(23): 9023-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615365

RESUMEN

Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1(-/-) mice. DNA-binding activity of NF-κB was higher in HSF-1(-/-) mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1(-/-) mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1(-/-) cardiomyocytes, deteriorated cardiac function in HSF-1(-/-) mice, and decreased survival. MDR1 promoter activity was higher in HSF-1(-/-) cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1(+/+) cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1(+/+) and HSF-1(-/-) cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Doxorrubicina/efectos adversos , Regulación de la Expresión Génica/genética , Insuficiencia Cardíaca/inducido químicamente , Proteínas de Choque Térmico/genética , Proteínas de Neoplasias/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Análisis de Varianza , Animales , Fluorescencia , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Chaperonas Moleculares , Miocitos Cardíacos/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Verapamilo/farmacología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
2.
J Biol Chem ; 285(49): 38194-203, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20861020

RESUMEN

Uncoupling of NO production from NADPH oxidation by endothelial nitric-oxide synthase (eNOS) is enhanced in hyperglycemic endothelium, potentially due to dissociation of heat shock proteins 90 (Hsp90), and cellular glucose homeostasis is enhanced by a ROS-induced positive feed back mechanism. In this study we investigated how such an uncoupling impacts oxygen metabolism and how the oxidative phosphorylation can be preserved by heat shock (42 °C for 2 h, hyperthermia) in bovine aortic endothelial cells. Normal and heat-shocked bovine aortic endothelial cells were exposed to normoglycemia (NG, 5.0 mM) or hyperglycemia (30 mM). With hyperglycemia treatment, O(2) consumption rate was reduced (from V(O(2)max) = 7.51 ± 0.54 to 2.35 ± 0.27 mm Hg/min/10(6) cells), whereas in heat-shocked cells, O(2) consumption rate remained unaltered (8.19 ± 1.01 mm Hg/min/10 × 10(6) cells). Heat shock was found to enhance Hsp90/endothelial NOS interactions and produce higher NO. Moreover, ROS generation in the hyperglycemic condition was also reduced in heat-shocked cells. Interestingly, glucose uptake was reduced in heat-shocked cells as a result of decrease in Glut-1 protein level. Glucose phosphate dehydrogenase activity that gives rise to NADPH generation was increased by hyperthermia, and mitochondrial oxidative metabolism was preserved. In conclusion, the present study provides a novel mechanism wherein the reduced oxidative stress in heat-shocked hyperglycemic cells down-regulates Glut-1 and glucose uptake, and fine-tuning of this pathway may be a potential approach to use for therapeutic benefit of diabetes mellitus.


Asunto(s)
Regulación hacia Abajo/fisiología , Células Endoteliales/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Glucosafosfato Deshidrogenasa/biosíntesis , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Hiperglucemia/metabolismo , Consumo de Oxígeno/fisiología , Animales , Aorta/metabolismo , Bovinos , Glucosa/metabolismo , Calor , NADP/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/fisiología
3.
Am J Physiol Heart Circ Physiol ; 298(6): H1832-41, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363884

RESUMEN

Treating cancer patients with chemotherapeutics, such as doxorubicin (Dox), cause dilated cardiomyopathy and congestive heart failure because of oxidative stress. On the other hand, heat shock factor-1 (HSF-1), a transcription factor for heat shock proteins (Hsps), is also known to be activated in response to oxidative stress. However, the possible role of HSF-1 activation and the resultant Hsp25 in chemotherapeutic-induced heart failure has not been investigated. Using HSF-1 wild-type (HSF-1(+/+)) and knock-out (HSF-1(-/-)) mice, we tested the hypothesis that activation of HSF-1 plays a role in the development of Dox-induced heart failure. Higher levels of Hsp25 and its phosphorylated forms were found in the failing hearts of Dox-treated HSF-1(+/+) mice. More than twofold increase in Hsp25 mRNA level was found in Dox-treated hearts. Proteomic analysis showed that there is accumulation and aggregation of Hsp25 in Dox-treated failing hearts. Additionally, Hsp25 was found to coimmunoprecipitate with p53 and vice versa. Further studies indicated that the Dox-induced higher levels of Hsp25 transactivated p53 leading to higher levels of the pro-apoptotic protein Bax, but other p53-related proteins remained unaltered. Moreover, HSF-1(-/-) mice showed significantly reduced Dox-induced heart failure and higher survival rate, and there was no change in Bax upon treating with Dox in HSF-1(-/-) mice. From these results we propose a novel mechanism for Dox-induced heart failure: increased expression of Hsp25 because of oxidant-induced activation of HSF-1 transactivates p53 to increase Bax levels, which leads to heart failure.


Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Proteínas de Unión al ADN/fisiología , Doxorrubicina/efectos adversos , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/fisiopatología , Factores de Transcripción/fisiología , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Estrés Oxidativo/fisiología , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
Mol Cancer Res ; 8(10): 1399-412, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20858736

RESUMEN

Transcriptional activation of p53 target genes, due to DNA damage, causes either apoptosis or survival by cell cycle arrest and DNA repair. However, the regulators of the choice between cell death and survival signaling have not been completely elucidated. Here, we report that human adenocarcinoma cells (MCF-7) survive UV-induced DNA damage by heat shock protein 27 (Hsp27)-assisted Akt/p21 phosphorylation/translocation. Protein levels of the p53 target genes, such as p21, Bcl-2, p38MAPK, and Akt, showed a positive correlation to Hsp27 level during 48 hours postirradiation, whereas p53 expression increased initially but started decreasing after 12 hours. Hsp27 prevented the G(1)-S phase cell cycle arrest, observed after 8 hours of post-UV irradiation, and PARP-1 cleavage was inhibited. Conversely, silencing Hsp27 enhanced G(1)-S arrest and cell death. Moreover, use of either Hsp27 or Akt small interference RNA reduced p21 phosphorylation and enhanced its retention in nuclei even after 48 hours postirradiation, resulting in enhanced cell death. Our results showed that Hsp27 expression and its direct chaperoning interaction increases Akt stability, and p21 phosphorylation and nuclear-to-cytoplasm translocation, both essential effects for the survival of UV-induced DNA-damaged cells. We conclude that the role of Hsp27 in cancer is not only for enhanced p53 proteolysis per se, rather it is also a critical determinant in p21 phosphorylation and translocation.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Citoprotección/fisiología , Proteínas de Choque Térmico HSP27/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Rayos Ultravioleta , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/efectos de la radiación , Citoprotección/efectos de la radiación , Daño del ADN/efectos de la radiación , Proteínas de Choque Térmico HSP27/efectos de la radiación , Proteínas de Choque Térmico , Humanos , Hidrólisis/efectos de la radiación , Chaperonas Moleculares , Fosforilación/fisiología , Fosforilación/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Transporte de Proteínas/genética , Transporte de Proteínas/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/efectos de la radiación , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/efectos de la radiación , Rayos Ultravioleta/efectos adversos
5.
Cell Stress Chaperones ; 14(6): 611-27, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19412660

RESUMEN

Nitric oxide (NO) is known to regulate mitochondrial respiration, especially during metabolic stress and disease, by nitrosation of the mitochondrial electron transport chain (ETC) complexes (irreversible) and by a competitive binding at O2 binding site of cytochrome c oxidase (CcO) in complex IV (reversible). In this study, by using bovine aortic endothelial cells, we demonstrate that the inhibitory effect of endogenously generated NO by nitric oxide synthase (NOS) activation, by either NOS stimulators or association with heat shock protein 90 (Hsp90), is significant only at high prevailing pO2 through nitrosation of mitochondrial ETC complexes, but it does not inhibit the respiration by competitive binding at CcO at very low pO2. ETC complexes activity measurements confirmed that significant reduction in complex IV activity was noticed at higher pO2, but it was unaffected at low pO2 in these cells. This was further extended to heat-shocked cells, where NOS was activated by the induction/activation of (Hsp90) through heat shock at an elevated temperature of 42 degrees C. From these results, we conclude that the entire attenuation of respiration by endogenous NO is due to irreversible inhibition by nitrosation of ETC complexes but not through reversible inhibition by competing with O2 binding at CcO at complex IV.


Asunto(s)
Respiración de la Célula/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Células Endoteliales/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Nitratos , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Animales , Aorta , Unión Competitiva , Bovinos , Respuesta al Choque Térmico/fisiología , Óxido Nítrico Sintasa/metabolismo , Nitrosación
6.
Am J Physiol Cell Physiol ; 295(5): C1281-91, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18787079

RESUMEN

Hypoxia induces various adoptive signaling in cells that can cause several physiological changes. In the present work, we have observed that exposure of bovine aortic endothelial cells (BAECs) to extreme hypoxia (1-5% O(2)) attenuates cellular respiration by a mechanism involving heat shock protein 90 (Hsp90) and endothelial nitric oxide (NO) synthase (eNOS), so that the cells are conditioned to consume less oxygen and survive in prolonged hypoxic conditions. BAECs, exposed to 1% O(2), showed a reduced respiration compared with 21% O(2)-maintained cells. Western blot analysis showed an increase in the association of Hsp90-eNOS and enhanced NO generation on hypoxia exposure, whereas there was no significant accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). The addition of inhibitors of Hsp90, phosphatidylinositol 3-kinase, and NOS significantly alleviated this hypoxia-induced attenuation of respiration. Thus we conclude that hypoxia-induced excess NO and its derivatives such as ONOO(-) cause inhibition of the electron transport chain and attenuate O(2) demand, leading to cell survival at extreme hypoxia. More importantly, such an attenuation is found to be independent of HIF-1alpha, which is otherwise thought to be the key regulator of respiration in hypoxia-exposed cells, through a nonphosphorylative glycolytic pathway. The present mechanistic insight will be helpful to understand the difference in the magnitude of endothelial dysfunction.


Asunto(s)
Células Endoteliales/enzimología , Proteínas HSP90 de Choque Térmico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Consumo de Oxígeno , Adaptación Fisiológica , Animales , Bovinos , Hipoxia de la Célula , Respiración de la Célula , Células Cultivadas , Espectroscopía de Resonancia por Spin del Electrón , Células Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Unión Proteica , Estabilidad Proteica , Factores de Tiempo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA