Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 19-46, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30379595

RESUMEN

The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.


Asunto(s)
Sistema Inmunológico , Sistema Nervioso , Neuroinmunomodulación , Animales , Humanos , Inmunidad Mucosa , Inmunomodulación
2.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811816

RESUMEN

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Asunto(s)
Glucemia , Inmunidad Innata , Interferón gamma , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Glucemia/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Insulina/metabolismo , Insulina/inmunología , Ratones Noqueados , Hiperglucemia/inmunología , Factor 3 Regulador del Interferón/metabolismo , FN-kappa B/metabolismo , Humanos , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Masculino
3.
Immunity ; 56(4): 695-703, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37044060

RESUMEN

Type 2 immune responses drive a broad range of biological processes including defense from large parasites, immunity to allergens, and non-immunity-related functions, such as metabolism and tissue homeostasis. The symptoms provoked by type 2 immunity, such as vomiting, coughing or itching, encompass nervous system triggering. Here, we review recent findings that place type 2 neuroimmune circuits at the center stage of immunity at barrier surfaces. We emphasize the homeostatic functions of these circuitries and how deregulation may drive pathology and impact disease outcomes, including in the context of cancer. We discuss a paradigm wherein type 2 neuroimmune circuits are central regulators of organismal physiology.


Asunto(s)
Sistema Nervioso , Neuroinmunomodulación , Homeostasis , Inmunidad
4.
Cell ; 165(4): 801-11, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153494

RESUMEN

Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.


Asunto(s)
Sistema Inmunológico/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/inervación , Sistema Nervioso/anatomía & histología , Animales , Hematopoyesis , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/inervación , Intestinos/inmunología , Intestinos/inervación , Tejido Linfoide/inmunología , Tejido Linfoide/fisiología , Sistema Nervioso/metabolismo , Neuronas/citología
5.
Annu Rev Neurosci ; 45: 339-360, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35363534

RESUMEN

Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interactions occur at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interactions.


Asunto(s)
Sistema Inmunológico , Neuroinmunomodulación , Neuroinmunomodulación/fisiología , Sistema Nervioso Periférico
6.
Nat Immunol ; 23(1): 1, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789862
7.
Nat Immunol ; 18(2): 116-122, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28092371

RESUMEN

Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.


Asunto(s)
Sistema Inmunológico , Enfermedades Intestinales/inmunología , Mucosa Intestinal/inmunología , Intestinos/inmunología , Sistema Nervioso , Neurogénesis , Neuroinmunomodulación , Animales , Homeostasis , Humanos , Enfermedades Intestinales/terapia , Intestinos/embriología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Microbiota , Cresta Neural , Neuroglía/fisiología
8.
Cell ; 157(2): 340-356, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725403

RESUMEN

Innate lymphoid cells (ILCs) are a recently recognized group of lymphocytes that have important functions in protecting epithelial barriers against infections and in maintaining organ homeostasis. ILCs have been categorized into three distinct groups, transcriptional circuitry and effector functions of which strikingly resemble the various T helper cell subsets. Here, we identify a common, Id2-expressing progenitor to all interleukin 7 receptor-expressing, "helper-like" ILC lineages, the CHILP. Interestingly, the CHILP differentiated into ILC2 and ILC3 lineages, but not into conventional natural killer (cNK) cells that have been considered an ILC1 subset. Instead, the CHILP gave rise to a peculiar NKp46(+) IL-7Rα(+) ILC lineage that required T-bet for specification and was distinct of cNK cells or other ILC lineages. Such ILC1s coproduced high levels of IFN-γ and TNF and protected against infections with the intracellular parasite Toxoplasma gondii. Our data significantly advance our understanding of ILC differentiation and presents evidence for a new ILC lineage that protects barrier surfaces against intracellular infections.


Asunto(s)
Diferenciación Celular , Linfocitos/citología , Linfocitos/inmunología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Factor de Transcripción GATA3/metabolismo , Inmunidad Innata , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Interleucina-7/metabolismo , Células Madre/citología , Toxoplasma , Toxoplasmosis/inmunología
9.
Nat Immunol ; 16(3): 215-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25689432

RESUMEN

Immunologists studying the relationship between nutrition and immunological function face many challenges. We discuss here some of the historical skepticism with which nutritional research has often been faced and the complexities that need to be overcome in order to provide meaningful mechanistic insights.


Asunto(s)
Estado Nutricional/inmunología , Animales , Dieta/normas , Alimentos/normas , Humanos , Inmunidad
10.
Immunity ; 49(1): 9-11, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30021148

RESUMEN

Pulmonary neuroimmune networks have emerged as important regulators of lung homeostasis. In a recent issue of Science, Sui et al. show that strategically positioned pulmonary neuroendocrine cells amplify allergic airway responses via group 2 innate lymphoid cells.


Asunto(s)
Asma , Humanos , Pulmón , Linfocitos , Células Neuroendocrinas
11.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343433

RESUMEN

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Asunto(s)
Colitis/metabolismo , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Oxiesteroles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Movimiento Celular/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/patología , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ligandos , Linfocitos/patología , Tejido Linfoide/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
12.
Nature ; 597(7876): 410-414, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408322

RESUMEN

Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the ß2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.


Asunto(s)
Tejido Adiposo/inervación , Tejido Adiposo/metabolismo , Encéfalo/metabolismo , Inmunidad Innata/inmunología , Mesodermo/citología , Vías Nerviosas , Neuronas/citología , Obesidad/metabolismo , Tejido Adiposo/citología , Animales , Encéfalo/citología , Señales (Psicología) , Citocinas/metabolismo , Metabolismo Energético , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Gónadas/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/metabolismo
13.
Immunity ; 47(3): 435-449.e8, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930659

RESUMEN

Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata/genética , Linfocitos/metabolismo , ARN Largo no Codificante/genética , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Diferenciación Celular , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Ensamble y Desensamble de Cromatina , Femenino , Perfilación de la Expresión Génica , Sitios Genéticos , Homeostasis , Proteína 2 Inhibidora de la Diferenciación/genética , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Linfocitos/inmunología , Masculino , Ratones , Regiones Promotoras Genéticas , Factor de Transcripción STAT5/metabolismo , Transcripción Genética
14.
Immunity ; 45(3): 610-625, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27612641

RESUMEN

The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.


Asunto(s)
Enfermedad Celíaca/inmunología , Interleucina-15/inmunología , Intestinos/inmunología , Linfoma/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Complejo CD3/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Granzimas/inmunología , Humanos , Proteína 2 Inhibidora de la Diferenciación/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor Notch1/inmunología , Factor de Transcripción STAT3/inmunología , Transducción de Señal/inmunología , Transcripción Genética/inmunología
15.
Circ Res ; 132(11): 1546-1565, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37228235

RESUMEN

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Corazón , Neuronas/fisiología , Encéfalo
16.
Nature ; 576(7786): E4, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31754269

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nature ; 574(7777): 254-258, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31534216

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Asunto(s)
Encéfalo/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Homeostasis/efectos de la radiación , Intestinos/inmunología , Intestinos/efectos de la radiación , Luz , Linfocitos/inmunología , Linfocitos/efectos de la radiación , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Encéfalo/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/inmunología , Ritmo Circadiano/fisiología , Señales (Psicología) , Conducta Alimentaria/efectos de la radiación , Femenino , Microbioma Gastrointestinal/efectos de la radiación , Inmunidad Innata/efectos de la radiación , Intestinos/citología , Metabolismo de los Lípidos , Linfocitos/metabolismo , Masculino , Ratones , Fotoperiodo
19.
Nature ; 549(7671): 277-281, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28869974

RESUMEN

Group 2 innate lymphoid cells (ILC2s) regulate inflammation, tissue repair and metabolic homeostasis, and are activated by host-derived cytokines and alarmins. Discrete subsets of immune cells integrate nervous system cues, but it remains unclear whether neuron-derived signals control ILC2s. Here we show that neuromedin U (NMU) in mice is a fast and potent regulator of type 2 innate immunity in the context of a functional neuron-ILC2 unit. We found that ILC2s selectively express neuromedin U receptor 1 (Nmur1), and mucosal neurons express NMU. Cell-autonomous activation of ILC2s with NMU resulted in immediate and strong NMUR1-dependent production of innate inflammatory and tissue repair cytokines. NMU controls ILC2s downstream of extracellular signal-regulated kinase and calcium-influx-dependent activation of both calcineurin and nuclear factor of activated T cells (NFAT). NMU treatment in vivo resulted in immediate protective type 2 responses. Accordingly, ILC2-autonomous ablation of Nmur1 led to impaired type 2 responses and poor control of worm infection. Notably, mucosal neurons were found adjacent to ILC2s, and these neurons directly sensed worm products and alarmins to induce NMU and to control innate type 2 cytokines. Our work reveals that neuron-ILC2 cell units confer immediate tissue protection through coordinated neuroimmune sensory responses.


Asunto(s)
Inmunidad Innata , Linfocitos/inmunología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Inmunidad Innata/efectos de los fármacos , Linfocitos/citología , Linfocitos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Neuronas/efectos de los fármacos , Neuropéptidos/farmacología , Nippostrongylus/inmunología , Receptores de Neurotransmisores/metabolismo , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología
20.
Eur J Immunol ; 51(7): 1602-1614, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895990

RESUMEN

Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.


Asunto(s)
Inmunidad Mucosa/inmunología , Neuroinmunomodulación/inmunología , Animales , Homeostasis/inmunología , Humanos , Neuronas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA