Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 69: 227-238, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29941258

RESUMEN

This study aimed to evaluate the suitability of two bioaerosol generation systems (dry and wet generation) for the aerosolization of microorganisms isolated from the International Space Station, and to calibrate the produced bioaerosols to fulfill the requirements of computational fluid dynamics model (CFD) validation. Concentration, stability, size distribution, agglomeration of generated bioaerosol and deposition of bioaerosols were analyzed. In addition, the dispersion of non-viable particles in the air was studied. Experiments proved that wet generation from microbial suspensions could be used for the production of well-calibrated and stabile bioaerosols for model validation. For the simulation of the natural release of fungal spores, a dry generation method should be used. This study showed that the used CFD model simulated the spread of non-viable particles fairly well. The mathematical deposition model by Lai and Nazaroff could be used to estimate the deposition velocities of bioaerosols on surfaces, although it somewhat underestimated the measured deposition velocities.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Monitoreo del Ambiente , Modelos Teóricos , Nave Espacial , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación
2.
Microbiology (Reading) ; 162(11): 1895-1903, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27655355

RESUMEN

Fungal growth on indoor surfaces can decay building materials and release hazardous substances that affect indoor air quality. Despite the numerous methods available for growth determination, there is no commonly accepted standard. The goal of this study was to compare five different assay methods for the measurement of fungal growth: cultivation, MS-based determination of ergosterol, beta-N-acetylhexosaminidase activity, quantitative PCR and microscopic spore counting. Three fungal species (Aspergillus puulaauensis, Cladosporium montecillanum and Penicillium polonicum) were grown on three different building materials (two types of acoustic board and wood). Fungal load was determined at different time points. Results from all of the methods, except the spore count, showed good correlation between each other (r=0.6-0.8). Results obtained with the cultivation method had the highest variability among replicate samples (65 %), making it the least reproducible in repeated measurements. However, it also displayed the highest variability in incubation times (149 %), indicating its suitability for detecting transient changes in the physiological state of cells. Similar to the cultivation method, quantitative PCR correlated well with the other methods and had high variability in incubation times but had lower variability among replicate samples. Ergosterol and beta-N-acetylhexosaminidase enzyme activity seemed to be the methods least dependent on the physiological state of the cells. Varying growth dynamics were observed for different species over time with the different assay methods. Each one of the tests provides a different perspective on fungal quantification due to its specific responses to the various stages of fungal growth.


Asunto(s)
Materiales de Construcción/microbiología , Hongos/crecimiento & desarrollo , Micología/métodos , Supervivencia Celular , Recuento de Colonia Microbiana , Materiales de Construcción/análisis , Hongos/genética , Micología/instrumentación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
3.
J Water Health ; 14(4): 640-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27441859

RESUMEN

Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.


Asunto(s)
Cloro/farmacología , Colifagos/efectos de los fármacos , Desinfectantes/farmacología , Desinfección/métodos , Rayos Ultravioleta , Purificación del Agua/métodos , Colifagos/aislamiento & purificación , Desinfección/instrumentación , Relación Dosis-Respuesta a Droga , Agua Potable/virología
4.
J Environ Manage ; 133: 206-13, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24384282

RESUMEN

Onsite wastewater treatment systems (OWTS) are recognised as potential threats to groundwater or other water environments subject to discharged effluents. In this study, the microbiological and nutrient removal properties of three different pilot-scale sand filters (SFs) were followed over a one-year period. Moreover, a separate phosphorus removal unit was tested for six months. For the best treatment system, the average log removals were 2.2-3.5 for pathogenic human noro- and adenoviruses and 4.3-5.2 and 4.6-5.4 for indicator viruses and bacteria, respectively. The system that effectively removed microbes was also efficient at removing nutrients. However, the poorest treatment system yielded substantially lower removals. The remarkable differences noted between the studied SFs highlights the importance of construction materials and the careful planning of the filters. Moreover, seasonal conditions appear to have a clear effect on purification efficiencies, emphasising the vulnerability of these systems especially in cold climates.


Asunto(s)
Frío , Dióxido de Silicio , Aguas Residuales/química , Aguas Residuales/virología , Adenoviridae/aislamiento & purificación , Secuencia de Bases , Colifagos/aislamiento & purificación , Cartilla de ADN , Finlandia , Norovirus/aislamiento & purificación , Proyectos Piloto , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Artículo en Inglés | MEDLINE | ID: mdl-34281070

RESUMEN

Sewage sludge contains a significant amount of phosphorus (P), which could be recycled to address the global demand for this non-renewable, important plant nutrient. The P in sludge can be solubilized and recovered so that it can be recycled when needed. This study investigated the P solubilization from sewage sludge using Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The experiment was conducted by mixing 10 mL of sewage sludge with 90 mL of different water/liquid medium/inoculum and incubated at 30 °C. The experiment was conducted in three semi-continuous phases by replacing 10% of the mixed incubated medium with fresh sewage sludge. In addition, 10 g/L elemental sulfur (S) was supplemented into the medium in the third phase. The pH of the A. thiooxidans and A. ferrooxidans treated sludge solutions was between 2.2 and 6.3 until day 42. In phase 3, after supplementing with S, the pH of A. thiooxidans treated sludge was reduced to 0.9, which solubilized and extracted 92% of P. We found that acidithiobacilli supplemented with S can be used to treat sludge, i.e., achieve hygienization, removal of heavy metals, and solubilization and recovery of P.


Asunto(s)
Acidithiobacillus , Metales Pesados , Concentración de Iones de Hidrógeno , Fósforo , Aguas del Alcantarillado
6.
Sci Total Environ ; 547: 234-243, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26789361

RESUMEN

Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, dp ≥ 0.8 µm) and fragments (dp ≤ 0.8 µm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment-spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based on elemental composition, most fragments originated from fungi, but also fragments from growth material were detected.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Hongos , Esporas Fúngicas , Materiales de Construcción/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA