Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256066

RESUMEN

Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Medicina Regenerativa , Humanos , Inteligencia Artificial , Enfermedades Neurodegenerativas/terapia , Nicho de Células Madre , Evolución Biológica
2.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891939

RESUMEN

Periodontitis, a prevalent inflammatory condition, affects the supporting structures of teeth, leading to significant oral health challenges. Traditional treatments have primarily focused on mechanical debridement, antimicrobial therapy, and surgery, which often fail to restore lost periodontal structures. Emerging as a novel approach in regenerative medicine, extracellular vesicle (EV) therapy, including exosomes, leverages nano-sized vesicles known for facilitating intercellular communication and modulating physiological and pathological processes. This study is a proof-of-concept type that evaluates the clinical efficacy of EV therapy as a non-surgical treatment for stage I-III periodontitis, focusing on its anti-inflammatory and regenerative potential. The research involved seven patients undergoing the therapy, and seven healthy individuals. Clinical parameters, including the plaque index, bleeding on probing, probing depth, and attachment level, were assessed alongside cytokine levels in the gingival crevicular fluid. The study found significant improvements in clinical parameters, and a marked reduction in pro-inflammatory cytokines post-treatment, matching the levels of healthy subjects, underscoring the therapy's ability to not only attenuate inflammation and enhance tissue regeneration, but also highlighting its potential in restoring periodontal health. This investigation illuminates the promising role of EV therapy in periodontal treatment, advocating for a shift towards therapies that halt disease progression and promote structural and functional restoration of periodontal tissues.


Asunto(s)
Vesículas Extracelulares , Líquido del Surco Gingival , Inflamación , Periodontitis , Regeneración , Humanos , Vesículas Extracelulares/metabolismo , Femenino , Periodontitis/terapia , Periodontitis/metabolismo , Periodontitis/patología , Masculino , Adulto , Persona de Mediana Edad , Inflamación/terapia , Inflamación/metabolismo , Inflamación/patología , Líquido del Surco Gingival/metabolismo , Citocinas/metabolismo , Resultado del Tratamiento
3.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894761

RESUMEN

Autism spectrum disorder (ASD) has recently been linked to neuroinflammation and an aberrant immune response within the central nervous system. The intricate relationship between immune response and ASD remains elusive, with a gap in understanding the connection between specific immune mechanisms and neural manifestations in autism. In this study, we employed a comprehensive statistical approach, fusing both overarching and granular methods to examine the concentration of 16 cytokines in the cerebrospinal fluid (CSF) across each autologous bone marrow aspirate concentrate (BMAC) intrathecal administration in 63 male and 17 female autism patients. Following a six-month period post the third administration, patients were stratified into three categories based on clinical improvement: Group 1- no/mild (28 subjects), Group 2-moderate (16 subjects), and Group 3-major improvement (15 subjects). Our integrated analysis revealed pronounced disparities in CSF cytokine patterns and clinical outcomes in autism subjects pre- and post-BMAC transplantation. Crucially, our results suggest that these cytokine profiles hold promise as predictive markers, pinpointing ASD individuals who might not exhibit notable clinical amelioration post-BMAC therapy.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Masculino , Femenino , Trastorno del Espectro Autista/terapia , Trasplante de Médula Ósea/métodos , Huesos , Citocinas , Resultado del Tratamiento
4.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457107

RESUMEN

A transplanted stem cell homing is a directed migration from the application site to the targeted tissue. Intrathecal application of stem cells is their direct delivery to cerebrospinal fluid, which defines the homing path from the point of injection to the brain. In the case of neurodegenerative diseases, this application method has the advantage of no blood-brain barrier restriction. However, the homing efficiency still needs improvement and homing mechanisms elucidation. Analysis of current research results on homing mechanisms in the light of intrathecal administration revealed a discrepancy between in vivo and in vitro results and a gap between preclinical and clinical research. Combining the existing research with novel insights from cutting-edge biochips, nano, and other technologies and computational models may bridge this gap faster.


Asunto(s)
Células Madre , Movimiento Celular
5.
Biology (Basel) ; 12(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979150

RESUMEN

Osteoarthritis (OA) is a progressive inflammatory disease of synovial joints and a leading cause of disability among adults. Inflammation-related genes, including genes for Toll-like receptors (TLRs), are tightly controlled by several microRNAs that, in addition to their pivotal role in the epigenetic regulation of target genes, are ligands for TLR activation and downstream signaling. Thus, we evaluated the association between OA risk and genetic variants in TLR2, TLR3, TLR4, TLR7, TLR9, and microRNAs that regulate TLRs signaling miR146a, miR155, and miR196a2. Our study group consisted of 95 surgically treated OA patients and a control group of 104 healthy individuals. Genetic polymorphisms were determined using TaqMan real-time PCR assays (Applied Biosystems). Adjusted logistic regression analysis demonstrated that polymorphisms in TLR4 rs4986790 (OR = 2.964, p = 0.006), TLR4 rs4986791 (OR = 8.766, p = 0.00001), and TLR7 rs385389 (OR = 1.579, p = 0.012) increased OA risk, while miR-196a2 rs11614913 (OR = 0.619, p = 0.034) was significantly associated with decreased OA risk. Our findings indicate that polymorphisms in the TLR4 and TLR7 genes might increase OA risk and suggest a novel association of miR-196a2 polymorphism with decreased OA susceptibility. The modulation of TLRs and miRNAs and their cross-talk might be an attractive target for a personalized approach to OA management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA