Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653235

RESUMEN

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Asunto(s)
COVID-19 , Evasión Inmune , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , COVID-19/inmunología , COVID-19/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Citotoxicidad Inmunológica , Regulación hacia Abajo , Pulmón/inmunología , Pulmón/virología , Pulmón/patología
2.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052684

RESUMEN

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675244

RESUMEN

Sleeve gastrectomy (SG) successfully recovers metabolic homeostasis in obese humans and rodents while also resulting in the normalization of insulin sensitivity and insulinemia. Reduced insulin levels have been attributed to lower insulin secretion and increased insulin clearance in individuals submitted to SG. Insulin degradation mainly occurs in the liver in a process controlled, at least in part, by the insulin-degrading enzyme (IDE). However, research has yet to explore whether liver IDE expression or activity is altered after SG surgery. In this study, C57BL/6 mice were fed a chow (CTL) or high-fat diet (HFD) for 10 weeks. Afterward, the HFD mice were randomly assigned to two groups: sham-surgical (HFD-SHAM) and SG-surgical (HFD-SG). Here, we confirmed that SG improves glucose-insulin homeostasis in obese mice. Additionally, SG reduced insulinemia by reducing insulin secretion, assessed by the analysis of plasmatic C-peptide content, and increasing insulin clearance, which was evaluated through the calculation of the plasmatic C-peptide:insulin ratio. Although no changes in hepatic IDE activity were observed, IDE expression was higher in the liver of HFD-SG compared with HFD-SHAM mice. These results indicate that SG may be helpful to counteract obesity-induced hyperinsulinemia by increasing insulin clearance, likely through enhanced liver IDE expression.


Asunto(s)
Hiperinsulinismo , Resistencia a la Insulina , Humanos , Ratones , Animales , Insulina/metabolismo , Ratones Obesos , Péptido C , Ratones Endogámicos C57BL , Pérdida de Peso , Obesidad/etiología , Obesidad/cirugía , Insulina Regular Humana , Hiperinsulinismo/etiología , Gastrectomía/métodos , Dieta Alta en Grasa/efectos adversos
4.
Int J Obes (Lond) ; 46(6): 1145-1154, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35173278

RESUMEN

BACKGROUND: Exercise is an important strategy in the management of diabetes. Experimental studies have shown that exercise acts, at least in part, by inducing the production of myokines that improve metabolic control and activate brown/beige adipose tissue depots. Combined training (CT) is recommended by the major diabetes guidelines due to its metabolic and cardiovascular benefits, however, its impact on brown/beige adipose tissue activities has never been tested in humans with overweight and type 2 diabetes (T2D). Here, we evaluated the effects of 16-week combined training (CT) program on brown adipose tissue activity; browning and autophagy markers, and serum pro-thermogenic/inflammatory inducers in patients with overweight and T2D. METHODS: Thirty-four patients with overweight and T2D were assigned to either a control group (CG) or a combined training group (CTG) in a randomized and controlled study. Functional/fitness parameters, anthropometry/body composition parameters, blood hormone/biochemical parameters, thermogenic/autophagic gene expression in subcutaneous adipose tissue were evaluated before and at the end of the intervention. In addition, cold-induced 18-Fluoroxyglucose Positron Emission Computed Tomography (18F-FDG PET/CT) was performed in the training group before and after the end of the intervention. RESULTS: CT increased cervical/supraclavicular brown adipose tissue (BAT) thermogenic activity (p = 0.03) as well as in perirenal adipose tissue (p = 0.02). In addition, CT increased the expression of genes related to thermogenic profile (TMEM26: + 95%, p = 0.04; and EPSTI1: + 26%, p = 0.03) and decreased autophagic genes (ULK1: -15%, p = 0.04; LC3: -5%, p = 0.02; and ATG4: -22%, p < 0.001) in subcutaneous adipose tissue. There were positive correlations between Δ% BAT activity with Δ% of post training energy expenditure cold exposure, HDL-c, IL4, adiponectin, irisin, meteorin-like, and TMEM26 and ZIC1 genes, besides negative correlations with LDL-c, total cholesterol and C-reactive protein. CONCLUSION: This is the first evidence of the beneficial actions of CT on adipose tissue thermogenic activity in humans, and it adds important support for the recommendation of CT as a strategy in the management of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sobrepeso , Tejido Adiposo Pardo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Fluorodesoxiglucosa F18/metabolismo , Humanos , Sobrepeso/metabolismo , Sobrepeso/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Termogénesis/genética
5.
Metab Brain Dis ; 36(8): 2425-2436, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599738

RESUMEN

The search for strategies to develop resilience against metabolic and neuropsychiatric disorders has motivated the clinical and experimental assessment of early life interventions such as lifestyle-based and use of unconventional pharmacological compounds. In this study, we assessed the effects of voluntary physical activity and 7,8-Dihydroxy-4-methylcoumarin (DHMC), independently or in combination, over mice physiological and behavioral parameters, adult hippocampal and hypothalamic neurogenesis, and neurotrophic factors expression in the hypothalamus. C57Bl/6J mice were submitted to a 29-day treatment with DHMC and allowed free access to a running wheel. We found that DHMC treatment alone reduced fasting blood glucose levels. Moreover, physical activity showed an anxiolytic effect in the elevated plus maze task and DHMC produced additional anxiolytic behavior, evidenced by reduced activity during the light cycle in the physical activity group. Although we did not find any differences in hypothalamic or hippocampal adult neurogenesis, DHMC increased gene expression levels of VEGF, which was correlated to the reduced fasting glucose levels. In conclusion, our data emphasize the potential of physical activity in reducing development of neuropsychiatric conditions, such as anxiety, and highlights DHMC as an attractive compound to be investigated in future studies addressing neuropsychiatric disorders associated with metabolic conditions.


Asunto(s)
Cumarinas , Plasticidad Neuronal , Animales , Cumarinas/farmacología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
J Transl Med ; 18(1): 44, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000799

RESUMEN

BACKGROUND: Crohn's disease (CD) is a multifactorial disease characterized by chronic intestinal inflammation. The increased visceral adiposity near the affected intestinal area, of which mesenteric adipose tissue (MAT) is the main component, is a feature of CD. Both protective and pathological roles have been attributed to this disease-associated tissue in CD. To understand the contribution of MAT to CD pathophysiology, a molecular and cellular signature of disease-associated MAT in CD patients was provided. METHODS: We performed an observational study with whole transcriptional analysis by RNA sequencing (RNA-seq) of MAT and ileal mucosa from CD patients with active disease and controls. qPCR and immunohistology were performed for validation analysis. RESULTS: RNA-seq identified 17 significantly regulated genes (|FC| > 1.5; FDR < 0.05) in CD-MAT compared to non-IBD controls, with a marked upregulation of plasma cell genes (i.e., IGLL5, MZB1, CD79A, POU2AF1, FCRL5, JCHAIN, DERL3, SDC1, PIM2). A less strict statistical cutoff value (|FC| > 1.5, nominal p ≤ 0.05) yielded a larger list of 651 genes in CD-MAT compared to controls. CD ileum showed the significant regulation compared to control ileum of 849 genes (|FC| > 1.5; FDR < 0.05) or 2654 genes (|FC| > 1.5, nominal p ≤ 0.05). Ingenuity Pathway Analysis revealed the significant regulation of pathways related to T- and B cell functionality in the MAT of CD patients. Despite the differences between the MAT and ileal signatures of CD patients, we identified a subset of 204 genes significantly modulated in both tissues compared to controls. This common signature included genes related to the plasma cell signature. Genes such as S100A8, S100A9 (calprotectin) and IL1B, which are associated with acute inflammatory response, were exclusively regulated in the ileal mucosa of CD disease. In contrast, some genes encoding for lymphocyte receptors such as MS4A1, CD3D and CD79A were exclusively regulated in CD-MAT, exhibiting a different pattern of immune cell activation compared to the ileal mucosa in CD patients. qPCR and immunohistology confirmed the presence of large infiltrates of CD3+ CD20+ lymphocytes and CD138+ plasma cells in CD-MAT. CONCLUSION: Our data strongly supports the role of CD-associated MAT as a site for T-, B- and plasma cell activation, and suggests that it could also act as a reservoir of memory immune responses.


Asunto(s)
Enfermedad de Crohn , Tejido Adiposo , Linfocitos B , Enfermedad de Crohn/genética , Humanos , Íleon , Mucosa Intestinal , Mesenterio , Células Plasmáticas , Transducción de Señal/genética , Linfocitos T
7.
Biol Chem ; 397(4): 337-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26812872

RESUMEN

Hereditary Angioedema is an autosomal dominant inherited disease leading to oedema attacks with variable severity and localization predominantly caused by C1-INH deficit. More than 400 mutations have been already identified, however no genetic analysis of a Brazilian cohort of HAE patients with C1-INH deficiency has been published. Our aim was to perform genetic analysis of C1-INH gene (SERPING1) in Brazilian HAE patients. We screened the whole SERPING1 coding region from 30 subjects out of 16 unrelated families with confirmed diagnosis of HAE due to C1-INH deficiency. Clinical diagnosis was based on symptoms and quantitative and/or functional analysis of C1-INH. We identified fifteen different mutations among which eight were not previously described according to databases. We found five small deletions (c.97_115del19; c.553delG; c.776_782del7; c.1075_1089del15 and c.1353_1354delGA), producing frameshifts leading to premature stop codons; seven missense mutations (c.498C>A; c.550G>C; c.752T>C; c.889G>A; c.1376C>A; c.1396C>T; c.1431C>A); one nonsense mutation (c.1480C>T), and two intronic alterations (c.51+1G>T; c.51+2T>C). Despite the small number of participants in this study, our results show mutations not previously identified in SERPING1 gene. This study represents the first Brazilian HAE cohort evaluated for mutations and it introduces the possibility to perform genetic analysis in case of need for differential diagnosis.


Asunto(s)
Angioedemas Hereditarios/genética , Proteínas Inactivadoras del Complemento 1/genética , Mutación , Adolescente , Adulto , Anciano , Angioedemas Hereditarios/sangre , Angioedemas Hereditarios/diagnóstico , Brasil , Niño , Proteína Inhibidora del Complemento C1 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Food Res Int ; 188: 114433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823827

RESUMEN

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Asunto(s)
Antiinflamatorios , Antioxidantes , Neuroglía , Proteína de Suero de Leche , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Glutatión/metabolismo , Péptidos/farmacología , Óxido Nítrico/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38880943

RESUMEN

BACKGROUND: Increased thermogenic activity has shown to be a promising target for treating and preventing obesity and type 2 diabetes (T2DM). Little is known about the muscular influence on nonshivering thermogenesis (NST), and it remains unclear whether physical training and potential metabolic improvements could be associated with changes in this type of thermogenic activity. OBJECTIVE: The present study aimed to assess muscular NST activity in overweight and T2DM before and after a combined training period (strength training followed by aerobic exercise). METHODS: Nonshivering cold-induced 18-fluoroxyglucose positron emission computed tomography (18F-FDG PET/CT) was performed before and after 16 weeks of combined training in 12 individuals with overweight and T2DM. The standard uptake value (SUV) of 18F-FDG was evaluated in skeletal muscles, the heart and the aorta. RESULTS: Muscles in the neck region exhibit higher SUV pre- and posttraining. Furthermore, a decrease in glucose uptake by the muscles of the lower and upper extremities and in the aorta was observed after training when adjusted for brown adipose tissue (BAT). These pre-post effects are accompanied by increased cardiac SUV and occur concurrently with heightened energy expenditure and metabolic improvements. CONCLUSIONS: Muscles in the neck region have greater metabolic activity upon exposure to cold. In addition, combined training appears to induce greater NST, favoring the trunk and neck region compared to limbs based on joint work and adaptations between skeletal muscles and BAT.

10.
Front Physiol ; 14: 1113968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895630

RESUMEN

Endothelial barrier (EB) disruption contributes to acute lung injury in COVID-19, and levels of both VEGF-A and Ang-2, which are mediators of EB integrity, have been associated with COVID-19 severity. Here we explored the participation of additional mediators of barrier integrity in this process, as well as the potential of serum from COVID-19 patients to induce EB disruption in cell monolayers. In a cohort from a clinical trial consisting of thirty patients with COVID-19 that required hospital admission due to hypoxia we demonstrate that i) levels of soluble Tie2 were increase, and of soluble VE-cadherin were decreased when compared to healthy individuals; ii) sera from these patients induce barrier disruption in monolayers of endothelial cells; and iii) that the magnitude of this effect is proportional to disease severity and to circulating levels of VEGF-A and Ang-2. Our study confirms and extends previous findings on the pathogenesis of acute lung injury in COVID-19, reinforcing the concept that EB is a relevant component of this disease. Our results pave the way for future studies that can refine our understanding of the pathogenesis of acute lung injury in viral respiratory disorders, and contribute to the identification of new biomarkers and therapeutic targets for these conditions.

11.
Biomedicines ; 11(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36831101

RESUMEN

Purpose: Considering that the CHRNA7 and CHRFAM7A genes can be modulated by acute or chronic inflammation, and exercise modulates inflammatory responses, the question that arises is whether physical exercise could exert any effect on the expression of these genes. Thus, the aim of this work is to identify the effects of different types of exercises on the expression of the CHRNA7, CHRFAM7A and tumor necrosis factor-α (TNF-α) in leukocytes of healthy normal weight (HNW), and overweight with type 2 diabetes (OT2D) individuals. Methods: 15 OT2D and 13 HNW participants (men and women, from 40 to 60 years old) performed in a randomized crossover design three exercise sessions: aerobic exercise (AE), resistance exercise (RE) and combined exercise (CE). Blood samples were collected at rest and post-60-min of the exercise sessions. The leukocytes were the analysis of the CHRNA7, CHRFAM7A and (TNF-α) gene expression. Results: At baseline, OT2D had higher CHRFAM7A and TNF-α expression compared to HNW. No statistical differences were observed between groups for CHRNA7; however, the HNW group presented almost twice as many subjects with the expression of this gene (24% vs. 49%). Post exercise, the CHRFAM7A increased in AE, RE and CE for HNW, and in AE and CE for OT2D. There was no significant difference for TNF-α and CHRNA7 expression between any type of exercise and group. Conclusions: Our study shows that OT2D individuals presented higher baseline expression of TNF-α and CHRFAM7A, besides evidence of decreased CHRNA7A expression in leukocytes when compared with HNW. On the other hand, acutely physical exercise induces increased CHRFAM7A expression, especially when the aerobic component is present.

12.
Res Pract Thromb Haemost ; : 100282, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37361399

RESUMEN

Introduction: Podoplanin (PDPN gene) and CLEC-2 are involved in inflammatory hemostasis and have also been related with the pathogenesis of thrombosis. Emerging evidence also suggest that podoplanin can exert protective effects in sepsis and in acute lung injury. In lungs, podoplanin is co-expressed with ACE2, which is the main entry receptor for SARS-CoV-2. Aim: To explore the role of podoplanin and CLEC-2 in COVID-19. Methods: Circulating levels of podoplanin and CLEC-2 were measured in 30 consecutive COVID-19 patients admitted due to hypoxia, and in 30 age- and sex-matched healthy individuals. Podoplanin expression in lungs from patients who died of COVID-19 was obtained from two independent public databases of single-cell RNAseq from which data from control lungs were also available. Results: Circulating podoplanin levels were lower in COVID-19, while no difference was observed in CLEC-2 levels. Podoplanin levels were significantly inversely correlated with markers of coagulation, fibrinolysis and innate immunity. scRNAseq data confirmed that PDPN is co-expressed with ACE2 in pneumocytes, and showed that PDPN expression is lower in this cell compartment in lungs from patients with COVID-19. Conclusion: Circulating levels of podoplanin are lower in COVID-19, and the magnitude of this reduction is correlated with hemostasis activation. We also demonstrate the downregulation of PDPN at the transcription level in pneumocytes. Together, our exploratory study questions whether an acquired podoplanin deficiency could be involved in the pathogenesis of acute lung injury in COVID-19, and warrant additional studies to confirm and refine these findings.

13.
J Neuroinflammation ; 9: 240, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23092428

RESUMEN

BACKGROUND: Glial cells are involved in the synaptic elimination process that follows neuronal lesions, and are also responsible for mediating the interaction between the nervous and immune systems. Neurons and glial cells express Toll-like receptors (TLRs), which may affect the plasticity of the central nervous system (CNS). Because TLRs might also have non-immune functions in spinal-cord injury (SCI), we aimed to investigate the influence of TLR2 and TLR4 on synaptic plasticity and glial reactivity after peripheral nerve axotomy. METHODS: The lumbar spinal cords of C3H/HePas wild-type (WT) mice, C3H/HeJ TLR4-mutant mice, C57BL/6J WT mice, and C57BL/6J TLR2 knockout (KO) mice were studied after unilateral sciatic nerve transection. The mice were killed via intracardiac perfusion, and the spinal cord was processed for immunohistochemistry, transmission electron microscopy (TEM), western blotting, cell culture, and reverse transcriptase PCR. Primary cultures of astrocytes from newborn mice were established to study the astrocyte response in the absence of TLR2 and the deficiency of TLR4 expression. RESULTS: The results showed that TLR4 and TLR2 expression in the CNS may have opposite effects on the stability of presynaptic terminals in the spinal cord. First, TLR4 contributed to synaptic preservation of terminals in apposition to lesioned motor neurons after peripheral injury, regardless of major histocompatibility complex class I (MHC I) expression. In addition, in the presence of TLR4, there was upregulation of glial cell-derived neurotrophic factor and downregulation of interleukin-6, but no morphological differences in glial reactivity were seen. By contrast, TLR2 expression led to greater synaptic loss, correlating with increased astrogliosis and upregulation of pro-inflammatory interleukins. Moreover, the absence of TLR2 resulted in the upregulation of neurotrophic factors and MHC I expression. CONCLUSION: TLR4 and TLR2 in the CNS may have opposite effects on the stability of presynaptic terminals in the spinal cord and in astroglial reactions, indicating possible roles for these proteins in neuronal and glial responses to injury.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico/patología , Médula Espinal/patología , Sinapsis/fisiología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Axotomía , Bromodesoxiuridina/metabolismo , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Lateralidad Funcional , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Médula Espinal/ultraestructura , Estadísticas no Paramétricas , Sinapsis/patología , Sinapsis/ultraestructura , Sinaptofisina/metabolismo , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 4/genética
14.
World J Exp Med ; 12(1): 1-15, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35096550

RESUMEN

The resolution of inflammation is an active process, guided by specialized pro-resolution lipid mediators (SPMs). These mediators originate from polyunsaturated fatty acids, such as omega-3. Sufficient evidence suggests that the beneficial effects attributed to omega-3 are, at least in part, the result of the immunomodulatory action of the SPMs, which act systemically by overcoming inflammation and repairing tissue damage, without suppressing the immune response. Recent studies suggest that an imbalance in the synthesis and/or activity of these compounds may be associated with the pathogenesis of several inflammatory conditions, such as inflammatory bowel disease (IBD). Thus, this review highlights the advances made in recent years with regard to the endo-genous synthesis and the biological role of lipoxins, resolvins, protectins, and maresins, as well as their precursors, in the regulation of inflammation; and provides an update on the participation of these mediators in the development and evolution of IBD and the therapeutic approaches that these immunomodulating substances are involved in this context.

15.
Mol Cell Endocrinol ; 550: 111646, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35413387

RESUMEN

Swiss mice belong to an outbred strain of mice largely used as a model for experimental obesity induced by high fat diet (HFD). We have previously demonstrated that a given cohort of age-matched Swiss mice is hallmarked by heterogeneous changes in body weight when exposed to HFD. The reasons underlying such variability, however, are not completely understood. Therefore we aimed to clarify the mechanisms underlying the variability in spontaneous weight gain in age-matched male swiss mice. To achieve that, individuals in a cohort of age-matched male Swiss mice were categorized as prone to body mass gain (PBMG) and resistant to body mass gain (RBMG). PBMG animals had higher caloric intake and body mass gain. RBMG and PBMG mice had a similar reduction in food intake when challenged with leptin but only RBMG exhibited a drop in ghrelin concentrations after refeeding. PBMG also showed increased midbrain levels of ghrelin receptor (Ghsr) and Dopamine receptor d2 (Drd2) mRNAs upon refeeding. Pharmacological blockade of GHSR with JMV3002 failed to reduce food intake in PMBG mice as it did in RBMG. On the other hand, the response to JMV3002 seen in PBMG was hallmarked by singular transcriptional response in the midbrain characterized by a simultaneous increase in both tyrosine hydroxylase (Th) and Proopiomelanocortin (Pomc) expressions. In conclusion, our data show that differences in the expression of genes related to the reward system in the midbrain as well as in ghrelin concentrations in serum correlate with spontaneous variability in body mass and food intake seen in age-matched male Swiss mice.


Asunto(s)
Ghrelina , Receptores de Ghrelina , Animales , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos , Ghrelina/metabolismo , Humanos , Masculino , Ratones , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo
16.
Front Physiol ; 12: 736244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126168

RESUMEN

Concentrations of pro-thermogenic/anti-inflammatory inductors are influenced by fed/fasting, sedentary/trained states, and metabolic pattern. However, there is a lack of information on the interactions of these conditions, especially in humans. Thus, the present study aimed to evaluate the chronic and acute training responses as well as the fed/fasted states of serum pro-thermogenic/anti-inflammatory inducers in overweight type 2 diabetics individuals. Fifteen individuals with type 2 diabetes [body mass index (BMI): 29.61 ± 3.60 kg/m2; age: 50.67 ± 3.97 years] participated in the study. In the pre- and post-experimental periods, baseline clinical parameters analyses were performed. Pro-thermogenic/anti-inflammatory inductors were evaluated pre/post-baseline and before, shortly after, and after 30' and 60' in the first and last sessions of a 16-week combined training (CT) period. These inducers were also compared for fasting and feeding before and after the training period. CT has improved baseline physical fitness, metabolic pattern, and it has also increased interleukin (IL)33 and FNDC5/irisin. In the first training session, there was a decrease in IL4, IL13, and IL33, besides an increase in FNDC5/irisin, and natriuretic peptides. In the last training session, there was an increase in natriuretic peptides and bone morphogenic protein 4 (BMP4). Differences in responses between the first and last training sessions were observed at certain post-session times for IL4, IL33, and natriuretic peptides, always with higher concentrations occurring in the last session. In evaluating the area under the curve (AUC) of the first and last training session, FNDC5/irisin, natriuretics peptides, and meteorin-like showed increased areas in the last training session. The pre-training fed state showed an increase in IL4 and IL33, while in fasting there was an increase in meteorin-like, natriuretic peptides, and FNDC5/irisin. In the post-training, IL4, IL13, and IL33 were increased in the fed state, while meteorin-like, natriuretic peptides, and FNDC5/irisin remained increased in the fast. Adaptation to physical training and a better metabolic pattern favor an improvement in the acute secretory pattern in part of pro-thermogenic and anti-inflammatory substances analyzed. The fed and fasting states also interfere differently in these substances, where fasting interferes with the increase of myokines, while the fed state induces an increase in interleukins. Clinical Trial Registration: [http://www.ensaiosclinicos.gov.br/rg/RBR-62n5qn/], identifier [U1111-1202-1476].

17.
Gut Microbes ; 13(1): 1-9, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33550892

RESUMEN

Microbiota-derived molecules called short-chain fatty acids (SCFAs) play a key role in the maintenance of the intestinal barrier and regulation of immune response during infectious conditions. Recent reports indicate that SARS-CoV-2 infection changes microbiota and SCFAs production. However, the relevance of this effect is unknown. In this study, we used human intestinal biopsies and intestinal epithelial cells to investigate the impact of SCFAs in the infection by SARS-CoV-2. SCFAs did not change the entry or replication of SARS-CoV-2 in intestinal cells. These metabolites had no effect on intestinal cells' permeability and presented only minor effects on the production of anti-viral and inflammatory mediators. Together our findings indicate that the changes in microbiota composition of patients with COVID-19 and, particularly, of SCFAs do not interfere with the SARS-CoV-2 infection in the intestine.


Asunto(s)
COVID-19/virología , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/virología , Adulto , Anciano , Células CACO-2 , Colon/virología , Células Epiteliales/virología , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Carga Viral , Internalización del Virus , Adulto Joven
18.
Toxicon ; 185: 76-90, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32649934

RESUMEN

This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, ß-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, ß-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.


Asunto(s)
Picaduras de Arañas , Venenos de Araña/toxicidad , Animales , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Arañas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
J Chem Neuroanat ; 103: 101713, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726089

RESUMEN

The arcuate and the paraventricular and lateral hypothalamic nuclei, related to hunger and satiety control, are generally compromised by excess fatty acids. In this situation, fatty acids cause inflammation via TLR4 (toll like receptor 4) and the nuclei become less responsive to the hormones leptin and insulin, contributing to the development of obesity. In this work, these nuclei were analyzed in animals fed with high-fat diet and submitted to swimming without and with load for two months. For this, frontal sections of the hypothalamus were immunolabelled with GFAP (glial fibrillary acidic protein), synaptophysin, IL-6 (interleukin 6) and TLR4. Also, proteins extracted from the hypothalamus were analyzed using Western blotting (GFAP and synaptophysin), fluorometric analysis for caspases 3 and 7, and CBA (cytometric bead array) for Th1, Th2, and Th17 profiles. The high-fat diet significantly caused overweight and, in the hypothalamus, decreased synapses and increased astrocytic reactivity. The swimming with load, especially 80 % of the maximum load, reduced those consequences. The high-fat diet increased TLR4 in the arcuate nucleus and the swimming exercise with 80 % of the maximum load showed a tendency of reducing this expression. Swimming did not significantly influence the inflammatory or anti-inflammatory cytokines in the hypothalamus or in plasma. The high-fat diet in sedentary animals increased the expression of caspases 3 and 7 and swimming practice reduced this increment to levels compatible with animals fed on a normal diet. The set of results conclude that the impact of swimming on the damage caused in the hypothalamus by a high-fat diet is positive. The different aspects analyzed in here point to better cellular viability and conservation of the synapses in the hypothalamic nuclei of overweight animals that practiced swimming with a load.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Neuronas/metabolismo , Sobrepeso/metabolismo , Natación/fisiología , Animales , Caspasas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Sobrepeso/etiología , Sinaptofisina/metabolismo , Receptor Toll-Like 4/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-32039191

RESUMEN

Weight gain is a metabolic disorder that often culminates in the development of obesity and other comorbidities such as diabetes. Obesity is characterized by the development of a chronic, subclinical systemic inflammation, and is regarded as a remarkably important factor that contributes to the development of such comorbidities. Therefore, laboratory methods that allow the identification of subjects at higher risk for severe weight-associated morbidity are of utter importance, considering the health, and safety of populations. This contribution analyzed the plasma of 180 Brazilian individuals, equally divided into a eutrophic control group and case group, to assess the presence of biomarkers related to weight gain, aiming at characterizing the phenotype of this population. Samples were analyzed by mass spectrometry and most discriminant features were determined by a machine learning approach using Random Forest algorithm. Five biomarkers related to the pathogenesis and chronicity of inflammation in weight gain were identified. Two metabolites of arachidonic acid were upregulated in the case group, indicating the presence of inflammation, as well as two other molecules related to dysfunctions in the cycle of nitric oxide (NO) and increase in superoxide production. Finally, a fifth case group marker observed in this study may indicate the trigger for diabetes in overweight and obesity individuals. The use of mass spectrometry combined with machine learning analyses to prospect and characterize biomarkers associated with weight gain will pave the way for elucidating potential therapeutic and prognostic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA