Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuro Oncol ; 24(10): 1673-1686, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35213727

RESUMEN

BACKGROUND: Leptomeningeal disease (LMD) occurs as a late complication of several human cancers and has no rationally designed treatment options. A major barrier to developing effective therapies for LMD is the lack of cell-based or preclinical models that recapitulate human disease. Here, we describe the development of in vitro and in vivo cultures of patient-derived cerebrospinal fluid circulating tumor cells (PD-CSF-CTCs) from patients with melanoma as a preclinical model to identify exploitable vulnerabilities in melanoma LMD. METHODS: CSF-CTCs were collected from melanoma patients with melanoma-derived LMD and cultured ex vivo using human meningeal cell-conditioned media. Using immunoassays and RNA-sequencing analyses of PD-CSF-CTCs, molecular signaling pathways were examined and new therapeutic targets were tested for efficacy in PD-CSF-CTCs preclinical models. RESULTS: PD-CSF-CTCs were successfully established both in vitro and in vivo. Global RNA analyses of PD-CSF-CTCs revealed several therapeutically tractable targets. These studies complimented our prior proteomic studies highlighting IGF1 signaling as a potential target in LMD. As a proof of concept, combining treatment of ceritinib and trametinib in vitro and in vivo demonstrated synergistic antitumor activity in PD-CSF-CTCs and BRAF inhibitor-resistant melanoma cells. CONCLUSIONS: This study demonstrates that CSF-CTCs can be grown in vitro and in vivo from some melanoma patients with LMD and used as preclinical models. These models retained melanoma expression patterns and had signaling pathways that are therapeutically targetable. These novel models/reagents may be useful in developing rationally designed treatments for LMD.


Asunto(s)
Melanoma , Neoplasias Meníngeas , Células Neoplásicas Circulantes , Medios de Cultivo Condicionados , Humanos , Melanoma/patología , Neoplasias Meníngeas/patología , Proteómica , Proteínas Proto-Oncogénicas B-raf/genética , ARN
2.
Mol Cancer Ther ; 19(8): 1623-1635, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430484

RESUMEN

Although gemcitabine is the cornerstone of care for pancreatic ductal adenocarcinoma (PDA), patients lack durable responses and relapse is inevitable. While the underlying mechanisms leading to gemcitabine resistance are likely to be multifactorial, there is a strong association between activating gemcitabine metabolism pathways and clinical outcome. This study evaluated casein kinase 1 delta (CK1δ) as a potential therapeutic target for PDA and bladder cancer, in which CK1δ is frequently overexpressed. We assessed the antitumor effects of genetically silencing or pharmacologically inhibiting CK1δ using our in-house CK1δ small-molecule inhibitor SR-3029, either alone or in combination with gemcitabine, on the proliferation and survival of pancreatic and bladder cancer cell lines and orthotopic mouse models. Genetic studies confirmed that silencing CK1δ or treatment with SR-3029 induced a significant upregulation of deoxycytidine kinase (dCK), a rate-limiting enzyme in gemcitabine metabolite activation. The combination of SR-3029 with gemcitabine induced synergistic antiproliferative activity and enhanced apoptosis in both pancreatic and bladder cancer cells. Furthermore, in an orthotopic pancreatic tumor model, we observed improved efficacy with combination treatment concomitant with increased dCK expression. This study demonstrates that CK1δ plays a role in gemcitabine metabolism, and that the combination of CK1δ inhibition with gemcitabine holds promise as a future therapeutic option for metastatic PDA as well as other cancers with upregulated CK1δ expression.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Desoxicitidina Quinasa/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Desoxicitidina/farmacología , Desoxicitidina Quinasa/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina , Neoplasias Pancreáticas
3.
Cancer Cell ; 36(5): 545-558.e7, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31668947

RESUMEN

Epigenetic regulation enables tumors to respond to changing environments during tumor progression and metastases and facilitates treatment resistance. Targeting chromatin modifiers or catalytic effectors of transcription is an emerging anti-cancer strategy. The cyclin-dependent kinases (CDKs) 12 and 13 phosphorylate the C-terminal domain of RNA polymerase II, regulating transcription and co-transcriptional processes. Here we report the development of SR-4835, a highly selective dual inhibitor of CDK12 and CDK13, which disables triple-negative breast cancer (TNBC) cells. Mechanistically, inhibition or loss of CDK12/CDK13 triggers intronic polyadenylation site cleavage that suppresses the expression of core DNA damage response proteins. This provokes a "BRCAness" phenotype that results in deficiencies in DNA damage repair, promoting synergy with DNA-damaging chemotherapy and PARP inhibitors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN/efectos de los fármacos , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Humanos , Intrones/efectos de los fármacos , Intrones/genética , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poliadenilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Oncotarget ; 9(14): 11592-11603, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29545922

RESUMEN

Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. In vivo antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA-2 proficient cancers.

5.
Clin Cancer Res ; 21(24): 5563-77, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26228206

RESUMEN

PURPOSE: Gemcitabine, a nucleoside analogue, is an important treatment for locally advanced and metastatic pancreatic ductal adenocarcinoma (PDAC) but provides only modest survival benefit. Targeting downstream effectors of the RAS/ERK signaling pathway by direct inhibition of MEK1/2 proteins is a promising therapeutic strategy, as aberrant activation of this pathway occurs frequently in PDAC. In this study, the ability of pimasertib, a selective allosteric MEK1/2 inhibitor, to enhance gemcitabine efficacy was tested and the molecular mechanism of their interaction was investigated. EXPERIMENTAL DESIGN: Cell survival and apoptosis were assessed by MTT and Caspase 3/7 Glo assays in human pancreatic cancer cell lines. Protein expression was detected by immunoblotting. The in vivo sensitivity of gemcitabine with pimasertib was evaluated in an orthotopic model of pancreatic tumor. RESULTS: Synergistic activity was observed when gemcitabine was combined sequentially with pimasertib, in human pancreatic cancer cells. In particular, pimasertib reduced ribonucleotide reductase subunit 1 (RRM1) protein, and this was associated with sensitivity to gemcitabine. Pretreatment with MG132 impaired reduction of RRM1 protein induced by pimasertib, suggesting that RRM1 is degraded posttranslationally. Immunoprecipitation indicated enhanced MDM2-mediated polyubiquitination of RRM1 through Lys-48-mediated linkage following pimasertib treatment, an effect mediated, in part, by AKT. Finally, the combination treatment with pimasertib and gemcitabine caused significant tumor growth delays in an orthotopic pancreatic cancer model, with RRM1 downregulation in pimasertib-treated mice. CONCLUSIONS: These results confirm an important role of RRM1 in gemcitabine response and indicate MEK as a potential target to sensitize gemcitabine therapy for PDAC. Clin Cancer Res; 21(24); 5563-77. ©2015 AACR.


Asunto(s)
Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Niacinamida/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/farmacología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Femenino , Técnicas de Silenciamiento del Gen , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Ratones , Niacinamida/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Interferente Pequeño/genética , Ribonucleósido Difosfato Reductasa , Trasplante Isogénico , Carga Tumoral/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Ubiquitinación , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA