Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 464-480.e10, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242088

RESUMEN

Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto , Humanos , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto/genética , Población Negra/genética , Polimorfismo de Nucleótido Simple/genética
2.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35216672

RESUMEN

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Asunto(s)
COVID-19/complicaciones , COVID-19/diagnóstico , Convalecencia , Inmunidad Adaptativa/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Autoanticuerpos/sangre , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad Innata/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Transcriptoma , Adulto Joven , Síndrome Post Agudo de COVID-19
3.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33171100

RESUMEN

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Asunto(s)
COVID-19 , Genómica , RNA-Seq , SARS-CoV-2 , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad
4.
Mol Cell ; 84(3): 522-537.e8, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151017

RESUMEN

The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.


Asunto(s)
Histona Desacetilasas , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B , Arginina Deiminasa Proteína-Tipo 4 , Factores de Transcripción , Humanos , Epigénesis Genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Proteómica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Línea Celular Tumoral
5.
Nature ; 629(8011): 458-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658765

RESUMEN

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Asunto(s)
División Celular , Linaje de la Célula , ADN Mitocondrial , Aptitud Genética , Heteroplasmia , Selección Genética , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , División Celular/genética , Línea Celular , Linaje de la Célula/genética , ADN Mitocondrial/genética , Edición Génica , Heteroplasmia/genética , Mitocondrias/genética , Mutación , Análisis de la Célula Individual/métodos
6.
Cell ; 155(5): 1061-74, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24210919

RESUMEN

The regulation of protein-coding and noncoding RNAs is linked to nuclear processes, including chromatin modifications and gene silencing. However, the mechanisms that distinguish RNAs and mediate their functions are poorly understood. We describe a nuclear RNA-processing network in fission yeast with a core module comprising the Mtr4-like protein, Mtl1, and the zinc-finger protein, Red1. The Mtl1-Red1 core promotes degradation of mRNAs and noncoding RNAs and associates with different proteins to assemble heterochromatin via distinct mechanisms. Mtl1 also forms Red1-independent interactions with evolutionarily conserved proteins named Nrl1 and Ctr1, which associate with splicing factors. Whereas Nrl1 targets transcripts with cryptic introns to form heterochromatin at developmental genes and retrotransposons, Ctr1 functions in processing intron-containing telomerase RNA. Together with our discovery of widespread cryptic introns, including in noncoding RNAs, these findings reveal unique cellular strategies for recognizing regulatory RNAs and coordinating their functions in response to developmental and environmental cues.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Telómero/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Intrones
7.
N Engl J Med ; 388(16): 1491-1500, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37075141

RESUMEN

BACKGROUND: In 2017, more than half the cases of typhoid fever worldwide were projected to have occurred in India. In the absence of contemporary population-based data, it is unclear whether declining trends of hospitalization for typhoid in India reflect increased antibiotic treatment or a true reduction in infection. METHODS: From 2017 through 2020, we conducted weekly surveillance for acute febrile illness and measured the incidence of typhoid fever (as confirmed on blood culture) in a prospective cohort of children between the ages of 6 months and 14 years at three urban sites and one rural site in India. At an additional urban site and five rural sites, we combined blood-culture testing of hospitalized patients who had a fever with survey data regarding health care use to estimate incidence in the community. RESULTS: A total of 24,062 children who were enrolled in four cohorts contributed 46,959 child-years of observation. Among these children, 299 culture-confirmed typhoid cases were recorded, with an incidence per 100,000 child-years of 576 to 1173 cases in urban sites and 35 in rural Pune. The estimated incidence of typhoid fever from hospital surveillance ranged from 12 to 1622 cases per 100,000 child-years among children between the ages of 6 months and 14 years and from 108 to 970 cases per 100,000 person-years among those who were 15 years of age or older. Salmonella enterica serovar Paratyphi was isolated from 33 children, for an overall incidence of 68 cases per 100,000 child-years after adjustment for age. CONCLUSIONS: The incidence of typhoid fever in urban India remains high, with generally lower estimates of incidence in most rural areas. (Funded by the Bill and Melinda Gates Foundation; NSSEFI Clinical Trials Registry of India number, CTRI/2017/09/009719; ISRCTN registry number, ISRCTN72938224.).


Asunto(s)
Fiebre Paratifoidea , Fiebre Tifoidea , Humanos , Lactante , Incidencia , India/epidemiología , Fiebre Paratifoidea/diagnóstico , Fiebre Paratifoidea/epidemiología , Vigilancia de la Población , Estudios Prospectivos , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/epidemiología , Costo de Enfermedad , Cultivo de Sangre , Preescolar , Niño , Adolescente , Población Urbana/estadística & datos numéricos , Población Rural/estadística & datos numéricos , Hospitalización/estadística & datos numéricos
8.
Nucleic Acids Res ; 51(12): 5901-5910, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224533

RESUMEN

Although targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species. In mice, αTfR1 AOCs achieved a > 15-fold higher concentration to muscle tissue than unconjugated siRNA. A single dose of an αTfR1 conjugated to an siRNA against Ssb mRNA produced > 75% Ssb mRNA reduction in mice and monkeys, and mRNA silencing was greatest in skeletal and cardiac (striated) muscle with minimal to no activity in other major organs. In mice the EC50 for Ssb mRNA reduction in skeletal muscle was >75-fold less than in systemic tissues. Oligonucleotides conjugated to control antibodies or cholesterol produced no mRNA reduction or were 10-fold less potent, respectively. Tissue PKPD of AOCs demonstrated mRNA silencing activity primarily driven by receptor-mediated delivery in striated muscle for siRNA oligonucleotides. In mice, we show that AOC-mediated delivery is operable across various oligonucleotide modalities. AOC PKPD properties translated to higher species, providing promise for a new class of oligonucleotide therapeutics.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos , Ratones , Animales , Anticuerpos/uso terapéutico , ARN Interferente Pequeño/genética , ARN Mensajero/genética , Músculo Esquelético
9.
J Biol Chem ; 299(9): 105099, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507014

RESUMEN

Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3ß-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3ß-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.


Asunto(s)
Colesterol , Peróxido de Hidrógeno , Proteínas de la Membrana , Metionina Sulfóxido Reductasas , Colesterol/análogos & derivados , Colesterol/metabolismo , Peróxido de Hidrógeno/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Sulfóxidos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo
10.
Nephrol Dial Transplant ; 39(2): 233-241, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37433572

RESUMEN

BACKGROUND: Ischaemic end-organ damage during haemodialysis (HD) is a significant problem that may be ameliorated by intradialytic cooling. A randomised trial was performed to compare standard HD (SHD; dialysate temperature 37°C) and programmed cooling of the dialysate [thermocontrolled HD (TCHD)] using multiparametric magnetic resonance imaging (MRI) to assess structural, functional and blood flow changes in the heart, brain and kidneys. METHODS: Prevalent HD patients were randomly allocated to receive either SHD or TCHD for 2 weeks before undergoing serial MRI at four time points: pre-, during (30 min and 180 min) and post-dialysis. MRI measures include cardiac index, myocardial strain, longitudinal relaxation time (T1), myocardial perfusion, internal carotid and basilar artery flow, grey matter perfusion and total kidney volume. Participants then crossed to the other modality to repeat the study protocol. RESULTS: Eleven participants completed the study. Separation in blood temperature between TCHD (-0.1 ± 0.3°C) and SHD (+0.3 ± 0.2°C; P = .022) was observed, although there was no difference in tympanic temperature changes between arms. There were significant intradialytic reductions in cardiac index, cardiac contractility (left ventricular strain), left carotid and basilar artery blood flow velocities, total kidney volume, longitudinal relaxation time (T1) of the renal cortex and transverse relaxation rate (T2*) of the renal cortex and medulla, but no differences between arms. Pre-dialysis T1 of the myocardium and left ventricular wall mass index were lower after 2 weeks of TCHD compared with SHD [1266 ms (interquartile range 1250-1291) versus 1311 ± 58 ms, P = .02; 66 ± 22 g/m2 versus 72 ± 23 g/m2, P = .004]. CONCLUSIONS: HD adversely affects cardiac function, reduces carotid and basilar artery blood flow and total kidney volume, but mild dialysate cooling using a biofeedback module did not result in differences in intradialytic MRI measures compared with SHD.


Asunto(s)
Fallo Renal Crónico , Diálisis Renal , Humanos , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Riñón , Soluciones para Diálisis , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen
11.
Nanotechnology ; 35(47)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39146958

RESUMEN

Herein, we report the dark-field microscopy studies on single silicon nanoparticles (SiNPs) fabricated using different deposition parameters in the electron beam evaporation technique. The morphology of the fabricated SiNPs is studied using theAtomic Force Microscope. Later, for the first time, the effect of thermal annealing and deposition parameters (i.e. beam current and deposition time) on the far-field scattering images and spectra of single SiNPs is studied using a transmission-mode dark-field optical microscope to estimate the wavelength locations and full-width at half maxima of the optical resonances of single SiNPs. Finally, the role of polarization of incident light on the optical resonances of single SiNPs is also studied by recording their scattering images and spectra.

12.
J Pediatr Psychol ; 49(7): 512-523, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867313

RESUMEN

OBJECTIVE: Differences of sex development (DSD) can affect the physical health, appearance, and psychosocial functioning of affected individuals, but little is known about how subjective appearance perceptions (body image) impact psychosocial outcomes. This study evaluated body image and its associations with psychosocial outcomes including quality of life, resilience, and psychosocial adjustment. METHODS: This cross-sectional, multi-method study assessed body image and psychosocial outcomes including quality of life, adjustment, and resilience in 97 youth and young adults with DSD (mean age = 17 ± 3.7 years; 56% assigned female in infancy) using psychometrically sound instruments. A subsample (n = 40) completed qualitative interviews. RESULTS: Quantitative results indicated that overall, participants were satisfied with their physical appearance, although less so with their primary sex characteristics. Body image dissatisfaction was associated with poorer psychosocial adjustment, quality of life, and resilience. Qualitatively, youth and young adults reported a variety of perceptions, both positive and negative, related to their body image and the impact of living with a DSD condition. Themes identified included appearance management; effects of DSD on body image; diagnostic factors and features; attitudes about diagnosis; and treatment. CONCLUSIONS: Body image is significantly associated with psychosocial outcomes in youth and young adults with DSD, with qualitative findings highlighting both positive and negative body image experiences. Results have implications for clinical care including screening for appearance concerns, normalization of appearance variations, and intervention development to better support healthy body image and psychosocial functioning in youth and young adults with DSD.


Asunto(s)
Imagen Corporal , Trastornos del Desarrollo Sexual , Calidad de Vida , Humanos , Femenino , Masculino , Imagen Corporal/psicología , Calidad de Vida/psicología , Adolescente , Adulto Joven , Estudios Transversales , Trastornos del Desarrollo Sexual/psicología , Adulto , Resiliencia Psicológica , Funcionamiento Psicosocial
13.
Mol Cell ; 61(5): 747-759, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942678

RESUMEN

Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci. CCR4-NOT also assembles HOODs at retrotransposons and regulated genes containing cryptic introns. We find that CCR4-NOT facilitates HOOD assembly through its association with the conserved Pir2/ARS2 protein, and also maintains rDNA integrity and silencing by promoting heterochromatin formation. Our results reveal connections among Erh1, CCR4-NOT, Pir2/ARS2, and RNAi, which target heterochromatin to regulate gene expression and protect genome integrity.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Meiosis , Interferencia de ARN , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Portadoras/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Retroelementos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
14.
BMC Public Health ; 24(1): 1386, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783219

RESUMEN

BACKGROUND: For accessing dental care in Canada, approximately 62% of the population has employment-based insurance, 6% have some publicly funded coverage, and 32% have to pay out-of pocket. Those with no insurance or public coverage find dental care more unaffordable compared to those with private insurance. To support the development of more comprehensive publicly funded dental care programs, it is important to understand the socio-demographic attributes of all those, who find dental care unaffordable. METHODS: This study is a secondary analysis of the data collected from Ontarians during the latest available cycle of the Canadian Community Health Survey (2017-18), a cross-sectional survey that collects information on health status, health care utilization, and health determinants for the Canadian population. First, bivariate analysis was conducted to determine the characteristics of Ontarians who lack dental insurance. Afterwards, we employed machine learning (ML) to analyze data and identify risk indicators for not having private dental insurance. Specifically, we trained several supervised ML models and utilized Shapley additive explanations (SHAP) to determine the relative feature importance for not having private dental insurance from the best ML model [the gradient boosting (GBM)]. RESULTS: Approximately one-third of Ontarians do not have private insurance coverage for dental care. Individuals with an income below $20,000, those unemployed or working part-time, seniors aged above 70, and those unable to afford to have their own housing are more at risk of not having private dental insurance, leading to financial barriers in accessing dental care. CONCLUSION: In the future, government-funded programs can incorporate these identified risk indicators when determining eligible populations for publicly funded dental programs. Understanding these attributes is critical for developing targeted and effective interventions, ensuring equitable access to dental care for Canadians.


Asunto(s)
Seguro Odontológico , Aprendizaje Automático , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Estudios Transversales , Seguro Odontológico/estadística & datos numéricos , Poblaciones Vulnerables , Adolescente , Anciano , Adulto Joven , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Factores Socioeconómicos , Cobertura del Seguro/estadística & datos numéricos , Algoritmos , Ontario , Factores Sociodemográficos , Canadá
15.
N Engl J Med ; 383(20): 1932-1940, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33176083

RESUMEN

BACKGROUND: A three-dose, oral rotavirus vaccine (Rotavac) was introduced in the universal immunization program in India in 2016. A prelicensure trial involving 6799 infants was not large enough to detect a small increased risk of intussusception. Postmarketing surveillance data would be useful in assessing whether the risk of intussusception would be similar to the risk seen with different rotavirus vaccines used in other countries. METHODS: We conducted a multicenter, hospital-based, active surveillance study at 27 hospitals in India. Infants meeting the Brighton level 1 criteria of radiologic or surgical confirmation of intussusception were enrolled, and rotavirus vaccination was ascertained by means of vaccination records. The relative incidence (incidence during the risk window vs. all other times) of intussusception among infants 28 to 365 days of age within risk windows of 1 to 7 days, 8 to 21 days, and 1 to 21 days after vaccination was evaluated by means of a self-controlled case-series analysis. For a subgroup of patients, a matched case-control analysis was performed, with matching for age, sex, and location. RESULTS: From April 2016 through June 2019, a total of 970 infants with intussusception were enrolled, and 589 infants who were 28 to 365 days of age were included in the self-controlled case-series analysis. The relative incidence of intussusception after the first dose was 0.83 (95% confidence interval [CI], 0.00 to 3.00) in the 1-to-7-day risk window and 0.35 (95% CI, 0.00 to 1.09) in the 8-to-21-day risk window. Similar results were observed after the second dose (relative incidence, 0.86 [95% CI, 0.20 to 2.15] and 1.23 [95% CI, 0.60 to 2.10] in the respective risk windows) and after the third dose (relative incidence, 1.65 [95% CI, 0.82 to 2.64] and 1.08 [95% CI, 0.69 to 1.73], respectively). No increase in intussusception risk was found in the case-control analysis. CONCLUSIONS: The rotavirus vaccine produced in India that we evaluated was not associated with intussusception in Indian infants. (Funded by the Bill and Melinda Gates Foundation and others.).


Asunto(s)
Intususcepción/etiología , Vacunas contra Rotavirus/efectos adversos , Administración Oral , Estudios de Casos y Controles , Femenino , Humanos , Inmunización Secundaria/efectos adversos , Incidencia , India/epidemiología , Lactante , Intususcepción/epidemiología , Masculino , Vigilancia de Productos Comercializados , Riesgo , Infecciones por Rotavirus/prevención & control , Vacunación , Vacunas Atenuadas/efectos adversos
16.
Nat Chem Biol ; 17(9): 947-953, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34413525

RESUMEN

Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy. Most TPD technologies use the ubiquitin-proteasome system, and are therefore limited to targeting intracellular proteins. To address this limitation, we developed a class of modular, bifunctional synthetic molecules called MoDE-As (molecular degraders of extracellular proteins through the asialoglycoprotein receptor (ASGPR)), which mediate the degradation of extracellular proteins. MoDE-A molecules mediate the formation of a ternary complex between a target protein and ASGPR on hepatocytes. The target protein is then endocytosed and degraded by lysosomal proteases. We demonstrated the modularity of the MoDE-A technology by synthesizing molecules that induce depletion of both antibody and proinflammatory cytokine proteins. These data show experimental evidence that nonproteinogenic, synthetic molecules can enable TPD of extracellular proteins in vitro and in vivo. We believe that TPD mediated by the MoDE-A technology will have widespread applications for disease treatment.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Dinitrofenoles/química , Dinitrofenoles/metabolismo , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
17.
Nature ; 543(7643): 126-130, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199302

RESUMEN

Uniparental disomy (UPD), in which an individual contains a pair of homologous chromosomes originating from only one parent, is a frequent phenomenon that is linked to congenital disorders and various cancers. UPD is thought to result mostly from pre- or post-zygotic chromosome missegregation. However, the factors that drive UPD remain unknown. Here we use the fission yeast Schizosaccharomyces pombe as a model to investigate UPD, and show that defects in the RNA interference (RNAi) machinery or in the YTH domain-containing RNA elimination factor Mmi1 cause high levels of UPD in vegetative diploid cells. This phenomenon is not due to defects in heterochromatin assembly at centromeres. Notably, in cells lacking RNAi components or Mmi1, UPD is associated with the untimely expression of gametogenic genes. Deletion of the upregulated gene encoding the meiotic cohesin Rec8 or the cyclin Crs1 suppresses UPD in both RNAi and mmi1 mutants. Moreover, overexpression of Rec8 is sufficient to trigger UPD in wild-type cells. Rec8 expressed in vegetative cells localizes to chromosomal arms and to the centromere core, where it is required for localization of the cohesin subunit Psc3. The centromeric localization of Rec8 and Psc3 promotes UPD by uniquely affecting chromosome segregation, causing a reductional segregation of one homologue. Together, these findings establish the untimely vegetative expression of gametogenic genes as a causative factor of UPD, and provide a solid foundation for understanding this phenomenon, which is linked to diverse human diseases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Células Germinativas/metabolismo , Modelos Biológicos , Mutación , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Disomía Uniparental/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Ciclinas/deficiencia , Ciclinas/genética , Diploidia , Heterocromatina/metabolismo , Humanos , Meiosis/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Tiempo , Disomía Uniparental/patología , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
18.
Adv Exp Med Biol ; 1415: 335-340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440053

RESUMEN

Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular dystrophy resulting from mutations in the gene CTRP5/C1QTNF5. A mouse model (Ctrp5+/-) for the most common S163R developed many features of human clinical disease. We generated a novel homozygous Ctrp5 gene knock-out (Ctrp5-/-) mouse model to further study the mechanism of L-ORD. The retinal morphology of these mice was evaluated by retinal imaging, light microscopy, and transmission electron microscopy (TEM) at 6, 11, and 18.5 mo. Expression of Ctrp5 was analyzed using immunostaining and qRT-PCR. The Ctrp5-/- mice showed lack of both Ctrp5 transcript and protein. Presence of a significantly larger number of autofluorescent spots was observed in Ctrp5-/- mice compared to the WT (P < 0.0001) at 19 mo. Increased RPE stress with vacuolization and thinning was observed as early as 6 mo in Ctrp5-/- mice. Further, ultrastructural analyses revealed a progressive accumulation of basal laminar sub-RPE deposits in Ctrp5-/- mice from 11 mo. The Ctrp5-/- mice shared retinal and RPE pathology that matches with that previously described for Ctrp5+/- mice suggesting that pathology in these mice results from the loss of functional CTRP5 and that the presence of CTRP5 is critical for normal RPE and retinal function.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Ratones , Humanos , Animales , Degeneración Retiniana/patología , Retina/patología , Degeneración Macular/patología , Mutación , Epitelio Pigmentado de la Retina/patología
19.
Clin Infect Dis ; 74(11): 2053-2056, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34473242

RESUMEN

Among 9048 people infected with SARS-CoV-2 between January and May 2021 in Maryland, in regression-adjusted analysis, SARS-CoV-2 viruses carrying the spike protein mutation E484K were disproportionately prevalent among persons infected after full vaccination against COVID-19 compared with infected persons who were not fully vaccinated (aOR, 1.96; 95% CI: 1.36-2.83).


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Humanos , Maryland/epidemiología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
20.
J Am Chem Soc ; 144(48): 21843-21847, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36410375

RESUMEN

Pentosinane is a structurally complex nonenzymatic post-translational modification of proteins believed to be present in all living things. It falls into the category of advanced glycation end products (AGEs) and is structurally related to the other AGEs pentosidine and glucosepane. Although pentosidine and glucosepane have been widely studied for their role in wide-ranging conditions (e.g., diabetes mellitus, Alzheimer's disease, and human aging), relatively little is known about pentosinane. Interestingly, previous reports have suggested that pentosidine may derive from pentosinane. The (patho)physiological significance of pentosinane in humans is largely unexplored. As a first step to address this knowledge gap, we report herein the first total synthesis of pentosinane. Our synthesis is high yielding (1.7% over seven steps), concise, and enantioselective, and it leverages a strategy for synthesizing 2,5-diaminoimidazoles previously developed by our lab. Access to synthetic pentosinane has allowed us to perform additional studies showing that its oxidation to pentosidine is both pH and oxygen dependent and is substantially slower under physiological conditions than previously believed. Additionally, pentosinane rapidly decomposes under harshly acidic conditions typically employed for pentosidine isolation. Taken together, these results suggest that pentosinane is likely to be more abundant in vivo than previously appreciated. We believe these results represent a critical step toward illuminating the role(s) of pentosinane in human biology.


Asunto(s)
Procesamiento Proteico-Postraduccional , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA