Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Stem Cell Reports ; 17(5): 1215-1228, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452596

RESUMEN

With the aim of producing ß cells for replacement therapies to treat diabetes, several protocols have been developed to differentiate human pluripotent stem cells to ß cells via pancreatic progenitors. While in vivo pancreatic progenitors expand throughout development, the in vitro protocols have been designed to make these cells progress as fast as possible to ß cells. Here, we report on a protocol enabling a long-term expansion of human pancreatic progenitors in a defined medium on fibronectin, in the absence of feeder layers. Moreover, through a screening of a polymer library we identify a polymer that can replace fibronectin. Our experiments, comparing expanded progenitors to directly differentiated progenitors, show that the expanded progenitors differentiate more efficiently into glucose-responsive ß cells and produce fewer glucagon-expressing cells. The ability to expand progenitors under defined conditions and cryopreserve them will provide flexibility in research and therapeutic production.


Asunto(s)
Células Secretoras de Insulina , Células Madre Pluripotentes , Diferenciación Celular , Fibronectinas/farmacología , Humanos , Páncreas , Polímeros
2.
Clin Exp Dent Res ; 7(4): 490-501, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33398935

RESUMEN

OBJECTIVES: The preclinical evaluation of bone substitutes is frequently performed in artificially created defects. However, such defects do not reflect the predominant clinical application of bone substitutes for socket preservation. Hence, the goal of this animal study was to compare the performance of a xenogenic bone substitute in extraction sites versus artificial defects. MATERIAL AND METHODS: Four study sites each were created in the mandibles of four minipigs in the region of the third premolars and first molars, respectively. On one side, fresh extraction sockets were established while contralaterally trephine defects were created in healed alveolar bone. All sites were augmented using a particulate xenogenic bone substitute, covered by resorbable membranes and allowed to heal for 12 weeks. The amounts of new bone, non-bone tissue and remaining bone substitute granules were quantified through histological and micro-CT analysis. Comparative statistics were based on t-tests for two samples and ANOVA with the level of significance set at α = 0.05. RESULTS: Histomorphometric data from only two animals could be quantitatively analyzed due to difficulty with identifying the surgical sites. The percentage of newly formed bone ranged between 53.2% ± 5.6% for artificial defects and 54.9% ± 12.4% for extraction sites. With the exception of ANOVA indicating a greater amount of non-bone tissue in extraction sites as compared to artificial sites (p = 0.047), no statistically significant differences were observed. Micro-CT scans showed patterns similar to the ones observed in histomorphometry. As extraction sites could be identified only in two micro-CT reconstructions, quantitative assessment was not undertaken. CONCLUSIONS: Despite the comparable performance of bone substitute material in artificial defects and extraction sites found here, the data gathered with this experiment was insufficient for showing equivalence of both approaches.


Asunto(s)
Sustitutos de Huesos , Animales , Humanos , Minerales , Porcinos , Porcinos Enanos , Extracción Dental , Cicatrización de Heridas
3.
Macromol Biosci ; 16(12): 1864-1872, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27779357

RESUMEN

The development of polymeric materials with cell adhesion abilities requires an understanding of cell-surface interactions which vary with cell type. To investigate the correlation between cell attachment and the nature of the polymer, a series of random and block copolymers composed of 2-(dimethylamino)ethyl acrylate and ethyl acrylate are synthesized through single electron transfer living radical polymerization. The polymers are synthesized with highly defined and controlled monomer compositions and exhibited narrow polydispersity indices. These polymers are examined for their performance in the attachment and growth of HeLa and HEK cells, with attachment successfully modeled on monomer composition and polymer chain length, with both cell lines found to preferentially attach to moderately hydrophobic functional materials. The understanding of the biological-material interactions assessed in this study will underpin further investigations of engineered polymer scaffolds with predictable cell binding performance.


Asunto(s)
Acrilatos/química , Adhesión Celular/fisiología , Metilaminas/química , Polímeros/química , Polímeros/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Células HEK293 , Células HeLa , Humanos , Polimerizacion
4.
Acta Biomater ; 34: 104-112, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26712601

RESUMEN

Synthetic hydrogels are attractive biomaterials due to their similarity to natural tissues and their chemical tunability, which can impart abilities to respond to environmental cues, e.g. temperature, pH and light. The mechanical properties of hydrogels can be enhanced by the generation of a double-network. Here, we report the development of an array platform that allows the macroscopic synthesis of up to 80 single- and double-network hydrogels on a single microscope slide. This new platform allows for the screening of hydrogels as 3D features in a high-throughput format with the added dimension of significant control over the compressive and tensile properties of the materials, thus widening their potential application. The platform is adaptable to allow different hydrogels to be generated, with the potential ability to tune and alter the first and second network, and represents an exciting tool in material and biomaterial discovery.


Asunto(s)
Materiales Biocompatibles/síntesis química , Ensayos Analíticos de Alto Rendimiento/métodos , Hidrogeles/química , Ensayo de Materiales/métodos , Fuerza Compresiva , Células HeLa , Humanos , Microscopía Electrónica de Rastreo , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA