Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Methods ; 21(2): 228-235, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38233503

RESUMEN

Single-cell genetic heterogeneity is ubiquitous in microbial populations and an important aspect of microbial biology; however, we lack a broadly applicable and accessible method to study this heterogeneity in microbial populations. Here, we show a simple, robust and generalizable method for high-throughput single-cell sequencing of target genetic loci in diverse microbes using simple droplet microfluidics devices (droplet targeted amplicon sequencing; DoTA-seq). DoTA-seq serves as a platform to perform diverse assays for single-cell genetic analysis of microbial populations. Using DoTA-seq, we demonstrate the ability to simultaneously track the prevalence and taxonomic associations of >10 antibiotic-resistance genes and plasmids within human and mouse gut microbial communities. This workflow is a powerful and accessible platform for high-throughput single-cell sequencing of diverse microbial populations.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Animales , Humanos , Ratones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
PLoS Biol ; 21(5): e3002100, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167201

RESUMEN

In the human gut, the growth of the pathogen Clostridioides difficile is impacted by a complex web of interspecies interactions with members of human gut microbiota. We investigate the contribution of interspecies interactions on the antibiotic response of C. difficile to clinically relevant antibiotics using bottom-up assembly of human gut communities. We identify 2 classes of microbial interactions that alter C. difficile's antibiotic susceptibility: interactions resulting in increased ability of C. difficile to grow at high antibiotic concentrations (rare) and interactions resulting in C. difficile growth enhancement at low antibiotic concentrations (common). Based on genome-wide transcriptional profiling data, we demonstrate that metal sequestration due to hydrogen sulfide production by the prevalent gut species Desulfovibrio piger increases the minimum inhibitory concentration (MIC) of metronidazole for C. difficile. Competition with species that display higher sensitivity to the antibiotic than C. difficile leads to enhanced growth of C. difficile at low antibiotic concentrations due to competitive release. A dynamic computational model identifies the ecological principles driving this effect. Our results provide a deeper understanding of ecological and molecular principles shaping C. difficile's response to antibiotics, which could inform therapeutic interventions.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Humanos , Antibacterianos/farmacología , Clostridioides
3.
Mol Syst Biol ; 19(3): e11406, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36714980

RESUMEN

The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.


Asunto(s)
Antibacterianos , ADN , Técnicas de Cocultivo , Plásmidos/genética , Antibacterianos/farmacología , Transferencia de Gen Horizontal
4.
PLoS Comput Biol ; 19(9): e1011436, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37773951

RESUMEN

Microbiomes interact dynamically with their environment to perform exploitable functions such as production of valuable metabolites and degradation of toxic metabolites for a wide range of applications in human health, agriculture, and environmental cleanup. Developing computational models to predict the key bacterial species and environmental factors to build and optimize such functions are crucial to accelerate microbial community engineering. However, there is an unknown web of interactions that determine the highly complex and dynamic behavior of these systems, which precludes the development of models based on known mechanisms. By contrast, entirely data-driven machine learning models can produce physically unrealistic predictions and often require significant amounts of experimental data to learn system behavior. We develop a physically-constrained recurrent neural network that preserves model flexibility but is constrained to produce physically consistent predictions and show that it can outperform existing machine learning methods in the prediction of certain experimentally measured species abundance and metabolite concentrations. Further, we present a closed-loop, Bayesian experimental design algorithm to guide data collection by selecting experimental conditions that simultaneously maximize information gain and target microbial community functions. Using a bioreactor case study, we demonstrate how the proposed framework can be used to efficiently navigate a large design space to identify optimal operating conditions. The proposed methodology offers a flexible machine learning approach specifically tailored to optimize microbiome target functions through the sequential design of informative experiments that seek to explore and exploit community functions.


Asunto(s)
Microbiota , Proyectos de Investigación , Humanos , Teorema de Bayes , Redes Neurales de la Computación , Algoritmos
5.
Annu Rev Biomed Eng ; 23: 169-201, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33781078

RESUMEN

Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal microbiome properties and the meta-omics and computational modeling tools that can be used to understand microbiomes at the cellular and system levels. We also describe strategies for designing and engineering microbiomes to enhance or build novel functions. Throughout the review, we discuss key knowledge and technology gaps for elucidating the networks and deciphering key control points for microbiome engineering, and highlight examples where multiple omics and modeling approaches can be integrated to address these gaps.


Asunto(s)
Microbiota , Biología Sintética , Humanos
6.
Mol Syst Biol ; 17(10): e10355, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34693621

RESUMEN

Understanding the principles of colonization resistance of the gut microbiome to the pathogen Clostridioides difficile will enable the design of defined bacterial therapeutics. We investigate the ecological principles of community resistance to C. difficile using a synthetic human gut microbiome. Using a dynamic computational model, we demonstrate that C. difficile receives the largest number and magnitude of incoming negative interactions. Our results show that C. difficile is in a unique class of species that display a strong negative dependence between growth and species richness. We identify molecular mechanisms of inhibition including acidification of the environment and competition over resources. We demonstrate that Clostridium hiranonis strongly inhibits C. difficile partially via resource competition. Increasing the initial density of C. difficile can increase its abundance in the assembled community, but community context determines the maximum achievable C. difficile abundance. Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be optimized by designing communities featuring a combination of mechanisms including species richness, environment acidification, and resource competition.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Bacterias , Clostridioides , Infecciones por Clostridium/tratamiento farmacológico , Humanos
7.
PLoS Comput Biol ; 15(3): e1006828, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30908479

RESUMEN

We present a nonlinear programming (NLP) framework for the scalable solution of parameter estimation problems that arise in dynamic modeling of biological systems. Such problems are computationally challenging because they often involve highly nonlinear and stiff differential equations as well as many experimental data sets and parameters. The proposed framework uses cutting-edge modeling and solution tools which are computationally efficient, robust, and easy-to-use. Specifically, our framework uses a time discretization approach that: i) avoids repetitive simulations of the dynamic model, ii) enables fully algebraic model implementations and computation of derivatives, and iii) enables the use of computationally efficient nonlinear interior point solvers that exploit sparse and structured linear algebra techniques. We demonstrate these capabilities by solving estimation problems for synthetic human gut microbiome community models. We show that an instance with 156 parameters, 144 differential equations, and 1,704 experimental data points can be solved in less than 3 minutes using our proposed framework (while an off-the-shelf simulation-based solution framework requires over 7 hours). We also create large instances to show that the proposed framework is scalable and can solve problems with up to 2,352 parameters, 2,304 differential equations, and 20,352 data points in less than 15 minutes. The proposed framework is flexible and easy-to-use, can be broadly applied to dynamic models of biological systems, and enables the implementation of sophisticated estimation techniques to quantify parameter uncertainty, to diagnose observability/uniqueness issues, to perform model selection, and to handle outliers.


Asunto(s)
Modelos Biológicos , Dinámicas no Lineales , Programas Informáticos , Biología de Sistemas/métodos , Bacterias , Microbioma Gastrointestinal/fisiología , Humanos
8.
Biochemistry ; 58(2): 94-107, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30457843

RESUMEN

Microbiomes impact nearly every environment on Earth by modulating the molecular composition of the environment. Temporally changing environmental stimuli and spatial organization are major variables shaping the structure and function of microbiomes. The web of interactions among members of these communities and between the organisms and the environment dictates microbiome functions. Microbial interactions are major drivers of microbiomes and are modulated by spatiotemporal parameters. A mechanistic and quantitative understanding of ecological, molecular, and environmental forces shaping microbiomes could inform strategies to control microbiome dynamics and functions. Major challenges for harnessing the potential of microbiomes for diverse applications include the development of predictive modeling frameworks and tools for precise manipulation of microbiome behaviors.


Asunto(s)
Biología Computacional/métodos , Microbiota/fisiología , Modelos Biológicos , Biología Sintética/métodos , Evolución Biológica , Teoría del Juego , Genoma Microbiano , Análisis Espacio-Temporal
9.
Mol Syst Biol ; 14(6): e8157, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930200

RESUMEN

The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Interacciones Microbianas , Fenómenos Fisiológicos Bacterianos , Biología Computacional/métodos , Humanos , Metabolómica , Modelos Biológicos
10.
PLoS Biol ; 13(1): e1002042, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25626086

RESUMEN

Delineating the strategies by which cells contend with combinatorial changing environments is crucial for understanding cellular regulatory organization. When presented with two carbon sources, microorganisms first consume the carbon substrate that supports the highest growth rate (e.g., glucose) and then switch to the secondary carbon source (e.g., galactose), a paradigm known as the Monod model. Sequential sugar utilization has been attributed to transcriptional repression of the secondary metabolic pathway, followed by activation of this pathway upon depletion of the preferred carbon source. In this work, we demonstrate that although Saccharomyces cerevisiae cells consume glucose before galactose, the galactose regulatory pathway is activated in a fraction of the cell population hours before glucose is fully consumed. This early activation reduces the time required for the population to transition between the two metabolic programs and provides a fitness advantage that might be crucial in competitive environments.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Metabolismo de los Hidratos de Carbono , Simulación por Computador , Metabolismo Energético , Galactosa/fisiología , Regulación Fúngica de la Expresión Génica , Interacción Gen-Ambiente , Genes Fúngicos , Glucosa/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Activación Transcripcional
12.
Proc Natl Acad Sci U S A ; 109(48): E3324-33, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150580

RESUMEN

Feedback loops are ubiquitous features of biological networks and can produce significant phenotypic heterogeneity, including a bimodal distribution of gene expression across an isogenic cell population. In this work, a combination of experiments and computational modeling was used to explore the roles of multiple feedback loops in the bimodal, switch-like response of the Saccharomyces cerevisiae galactose regulatory network. Here, we show that bistability underlies the observed bimodality, as opposed to stochastic effects, and that two unique positive feedback loops established by Gal1p and Gal3p, which both regulate network activity by molecular sequestration of Gal80p, induce this bimodality. Indeed, systematically scanning through different single and multiple feedback loop knockouts, we demonstrate that there is always a concentration regime that preserves the system's bimodality, except for the double deletion of GAL1 and the GAL3 feedback loop, which exhibits a graded response for all conditions tested. The constitutive production rates of Gal1p and Gal3p operate as bifurcation parameters because variations in these rates can also abolish the system's bimodal response. Our model indicates that this second loss of bistability ensues from the inactivation of the remaining feedback loop by the overexpressed regulatory component. More broadly, we show that the sequestration binding affinity is a critical parameter that can tune the range of conditions for bistability in a circuit with positive feedback established by molecular sequestration. In this system, two positive feedback loops can significantly enhance the region of bistability and the dynamic response time.


Asunto(s)
Retroalimentación , Galactosa/metabolismo , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Procesos Estocásticos
13.
bioRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37986770

RESUMEN

The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.

14.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659900

RESUMEN

The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.

15.
ACS Synth Biol ; 13(5): 1424-1433, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38684225

RESUMEN

The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.


Asunto(s)
Teorema de Bayes , Optogenética , Saccharomyces cerevisiae , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Sintética/métodos , Luz , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Aprendizaje Automático , Ensayos Analíticos de Alto Rendimiento/métodos
16.
Nat Microbiol ; 9(7): 1700-1712, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38914826

RESUMEN

Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Humanos , Ácidos Grasos Volátiles/metabolismo , Prebióticos , Probióticos/metabolismo , Probióticos/administración & dosificación , Modelos Biológicos , Dieta , Bacterias/metabolismo , Bacterias/genética , Estudios de Cohortes , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Adulto
17.
Sci Adv ; 9(31): eadg5476, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540747

RESUMEN

Population heterogeneity can promote bacterial fitness in response to unpredictable environmental conditions. A major mechanism of phenotypic variability in the human gut symbiont Bacteroides spp. involves the inversion of promoters that drive the expression of capsular polysaccharides, which determine the architecture of the cell surface. High-throughput single-cell sequencing reveals substantial population heterogeneity generated through combinatorial promoter inversion regulated by a broadly conserved serine recombinase. Exploiting control over population diversification, we show that populations with different initial compositions converge to a similar composition over time. Combining our data with stochastic computational modeling, we demonstrate that the differential rates of promoter inversion are a major mechanism shaping population dynamics. More broadly, our approach could be used to interrogate single-cell combinatorial phase variable states of diverse microbes including bacterial pathogens.


Asunto(s)
Bacterias , Inversión Cromosómica , Humanos , Regiones Promotoras Genéticas , Bacterias/genética , Polisacáridos , Análisis de la Célula Individual
18.
Nat Ecol Evol ; 7(1): 127-142, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604549

RESUMEN

Dietary fibre impacts the growth dynamics of human gut microbiota, yet we lack a detailed and quantitative understanding of how these nutrients shape microbial interaction networks and responses to perturbations. By building human gut communities coupled with computational modelling, we dissect the effects of fibres that vary in chemical complexity and each of their constituent sugars on community assembly and response to perturbations. We demonstrate that the degree of chemical complexity across different fibres limits microbial growth and the number of species that can utilize these nutrients. The prevalence of negative interspecies interactions is reduced in the presence of fibres compared with their constituent sugars. Carbohydrate chemical complexity enhances the reproducibility of community assembly and resistance of the community to invasion. We demonstrate that maximizing or minimizing carbohydrate competition between resident and invader species enhances resistance to invasion. In sum, the quantitative effects of carbohydrate chemical complexity on microbial interaction networks could be exploited to inform dietary and bacterial interventions to modulate community resistance to perturbations.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Reproducibilidad de los Resultados , Microbioma Gastrointestinal/fisiología , Bacterias , Carbohidratos , Azúcares
19.
Cell Syst ; 14(12): 1044-1058.e13, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38091992

RESUMEN

Microbial communities offer vast potential across numerous sectors but remain challenging to systematically control. We develop a two-stage approach to guide the taxonomic composition of synthetic microbiomes by precisely manipulating media components and initial species abundances. By combining high-throughput experiments and computational modeling, we demonstrate the ability to predict and design the diversity of a 10-member synthetic human gut community. We reveal that critical environmental factors governing monoculture growth can be leveraged to steer microbial communities to desired states. Furthermore, systematically varied initial abundances drive variation in community assembly and enable inference of pairwise inter-species interactions via a dynamic ecological model. These interactions are overall consistent with conditioned media experiments, demonstrating that specific perturbations to a high-richness community can provide rich information for building dynamic ecological models. This model is subsequently used to design low-richness communities that display low or high temporal taxonomic variability over an extended period. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Bacterias , Microbiota , Humanos , Simulación por Computador
20.
Nat Commun ; 14(1): 2001, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037805

RESUMEN

DNA is a universal and programmable signal of living organisms. Here we develop cell-based DNA sensors by engineering the naturally competent bacterium Bacillus subtilis (B. subtilis) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA extraction. The modularity of the living cell-based DNA-sensing mechanism and simple detection procedure could enable programmable DNA sensing for a wide range of applications.


Asunto(s)
Bacillus subtilis , Bacterias , Técnicas Biosensibles , Ingeniería Celular , ADN Bacteriano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Técnicas Biosensibles/métodos , Humanos , ADN Bacteriano/análisis , ADN Bacteriano/genética , Fluorescencia , Viabilidad Microbiana , Biología Sintética , Redes Reguladoras de Genes/genética , Genes Reporteros/genética , Técnicas In Vitro , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones Bacterianas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA