Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(4): C1178-C1192, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406825

RESUMEN

K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.


Asunto(s)
Isoleucina , Retina , Ratones , Humanos , Animales , Isoleucina/metabolismo , Retina/metabolismo , Ceguera/metabolismo , Mutación/genética , Treonina/metabolismo
2.
J Physiol ; 599(2): 593-608, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219695

RESUMEN

KEY POINTS: Kir7.1 K+ channel expressed in retinal pigment epithelium is mutated in inherited retinal degeneration diseases. We study Kir7.1 in heterologous expression to test the hypothesis that pathological R162 mutation to neutral amino acids results in loss of a crucial site that binds PI(4,5)P2 . Although R162W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. In addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and is essential for channel activity. R162 substitution with a large, neutral side chain like Trp exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in a cell expressing the same amount of mutant and wild-type channels. ABSTRACT: Mutations in the Kir7.1 K+ channel, highly expressed in retinal pigment epithelium, have been linked to inherited retinal degeneration diseases. Examples are mutations changing Arg 162 to Trp in snowflake vitreoretinal degeneration (SVD) and Gln in retinitis pigmentosa. R162 is believed to be part of a site that binds PI(4,5)P2 and stabilises the open state. We have tested the hypothesis that R162 mutation to neutral amino acids will result in the loss of this crucial interaction to the detriment of channel function. Our findings indicate that although R612W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Cys chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. Experiments titrating the levels of plasma membrane PI(4,5)P2 with voltage-dependent phosphatase DrVSP reveal that, in addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and ensures channel activity. Finally, the use of a concatemeric approach shows that substitution of R162 with a large, neutral side chain mimicking a Trp residue exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in heterozygous cells carrying the SVD mutation. Our results suggest that if mutations in the human KCNJ13 gene resulting in the neutralisation of R162 and Kir7.1 malfunction led to retinal degeneration diseases, their severity might depend on the nature of the side chain of the replacing amino acid.


Asunto(s)
Degeneración Retiniana , Membrana Celular , Humanos , Mutación , Fosfatidilinositoles , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina
3.
Biochem Biophys Res Commun ; 514(3): 574-579, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31056263

RESUMEN

Kir7.1 is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. In the present communication we report the presence of a novel splice variant of Kir7.1 in mouse tissues including kidney, lung, choroid plexus and retinal pigment epithelium (RPE). The variant named mKir7.1-SV2 lacks most of the C-terminus domain but is predicted to have the two transmembrane domains and permeation pathway unaffected. Similarly truncated predicted proteins, Kir7.1-R166X and Kir7.1-Q219X, would arise from mutations associated with Leber Congenital Amaurosis, a rare recessive hereditary retinal disease that results in vision loss at early age. We found that mKir7.1-SV2 and the pathological variants do not produce any channel activity when expressed alone in HEK-293 cells due to their scarce presence in the plasma membrane. Simultaneous expression with the full length Kir7.1 however leads to a reduction in activity of the wild-type channel that might be due to partial proteasome degradation of WT-mutant channel heteromers.


Asunto(s)
Amaurosis Congénita de Leber/genética , Mutación/genética , Especificidad de Órganos , Canales de Potasio de Rectificación Interna/genética , Empalme del ARN/genética , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas Mutantes/metabolismo , Especificidad de Órganos/efectos de los fármacos , Péptidos/genética , Potasio/metabolismo , Inhibidores de Proteasoma/farmacología , Empalme del ARN/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA