Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682330

RESUMEN

BACKGROUND: Drug-induced QT prolongation (diLQT) is a feared side effect that could expose susceptible individuals to fatal arrhythmias. The occurrence of diLQT is primarily attributed to unintended drug interactions with cardiac ion channels, notably the hERG (human ether-a-go-go-related gene) channels that generate the delayed-rectifier potassium current (IKr) and thereby regulate the late repolarization phase. There is an important interindividual susceptibility to develop diLQT, which is of unknown origin but can be reproduced in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). We aimed to investigate the dynamics of hERG channels in response to sotalol and to identify regulators of the susceptibility to developing diLQT. METHODS: We measured electrophysiological activity and cellular distribution of hERG channels after hERG blocker treatment in iPS-CMs derived from patients with highest sensitivity (HS) or lowest sensitivity (LS) to sotalol administration in vivo (ie, on the basis of the measure of the maximal change in QT interval 3 hours after administration). Specific small interfering RNAs and CAVIN1-T2A-GFP adenovirus were used to manipulate CAVIN1 expression. RESULTS: Whereas HS and LS iPS-CMs showed similar electrophysiological characteristics at baseline, the late repolarization phase was prolonged and IKr significantly decreased after exposure of HS iPS-CMs to low sotalol concentrations. IKr reduction was caused by a rapid translocation of hERG channel from the membrane to the cytoskeleton-associated fractions upon sotalol application. CAVIN1, essential for caveolae biogenesis, was 2× more highly expressed in HS iPS-CMs, and its knockdown by small interfering RNA reduced their sensitivity to sotalol. CAVIN1 overexpression in LS iPS-CMs using adenovirus showed reciprocal effects. We found that treatment with sotalol promoted translocation of the hERG channel from the plasma membrane to the cytoskeleton fractions in a process dependent on CAVIN1 (caveolae associated protein 1) expression. CAVIN1 silencing reduced the number of caveolae at the membrane and abrogated the translocation of hERG channel in sotalol-treated HS iPS-CMs. CAVIN1 also controlled cardiomyocyte responses to other hERG blockers, such as E4031, vandetanib, and clarithromycin. CONCLUSIONS: Our study identifies unbridled turnover of the potassium channel hERG as a mechanism supporting the interindividual susceptibility underlying diLQT development and demonstrates how this phenomenon is finely tuned by CAVIN1.

2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169074

RESUMEN

Cells are filled with macromolecules and polymer networks that set scale-dependent viscous and elastic properties to the cytoplasm. Although the role of these parameters in molecular diffusion, reaction kinetics, and cellular biochemistry is being increasingly recognized, their contributions to the motion and positioning of larger organelles, such as mitotic spindles for cell division, remain unknown. Here, using magnetic tweezers to displace and rotate mitotic spindles in living embryos, we uncovered that the cytoplasm can impart viscoelastic reactive forces that move spindles, or passive objects with similar size, back to their original positions. These forces are independent of cytoskeletal force generators yet reach hundreds of piconewtons and scale with cytoplasm crowding. Spindle motion shears and fluidizes the cytoplasm, dissipating elastic energy and limiting spindle recoils with functional implications for asymmetric and oriented divisions. These findings suggest that bulk cytoplasm material properties may constitute important control elements for the regulation of division positioning and cellular organization.


Asunto(s)
Citoplasma/fisiología , Elasticidad/fisiología , Huso Acromático/fisiología , Animales , Fenómenos Biomecánicos/fisiología , División Celular/fisiología , Difusión , Cinética , Fenómenos Magnéticos , Microtúbulos , Mitosis/fisiología , Orgánulos , Erizos de Mar , Viscosidad
3.
J Biol Chem ; 299(3): 102974, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738791

RESUMEN

In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.


Asunto(s)
Células Artificiales , Fusión de Membrana , Proteínas SNARE , Caveolinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Sintaxina 1/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
PLoS Pathog ; 18(6): e1010643, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731833

RESUMEN

Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies.


Asunto(s)
Anopheles , Plasmodium , Animales , Femenino , Anopheles/parasitología , Mamíferos , Merozoítos/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
5.
J Microsc ; 294(3): 276-294, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656474

RESUMEN

Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Disciplinas de las Ciencias Biológicas/métodos
6.
Proc Natl Acad Sci U S A ; 116(15): 7343-7352, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30918125

RESUMEN

Mechanoreceptive organelles (MOs) are specialized subcellular entities in mechanoreceptors that transform extracellular mechanical stimuli into intracellular signals. Their ultrastructures are key to understanding the molecular nature and mechanics of mechanotransduction. Campaniform sensilla detect cuticular strain caused by muscular activities or external stimuli in Drosophila Each campaniform sensillum has an MO located at the distal tip of its dendrite. Here we analyzed the molecular architecture of the MOs in fly campaniform mechanoreceptors using electron microscopic tomography. We focused on the ultrastructural organization of NompC (a force-sensitive channel) that is linked to the array of microtubules in these MOs via membrane-microtubule connectors (MMCs). We found that NompC channels are arranged in a regular pattern, with their number increasing from the distal to the proximal end of the MO. Double-length MMCs in nompC29+29ARs confirm the ankyrin-repeat domain of NompC (NompC-AR) as a structural component of MMCs. The unexpected finding of regularly spaced NompC-independent linkers in nompC3 suggests that MMCs may contain non-NompC components. Localized laser ablation experiments on mechanoreceptor arrays in halteres suggest that MMCs bear tension, providing a possible mechanism for why the MMCs are longer when NompC-AR is duplicated or absent in mutants. Finally, mechanical modeling shows that upon cuticular deformation, sensillar architecture imposes a rotational activating force, with the proximal end of the MO, where more NOMPC channels are located, being subject to larger forces than the distal end. Our analysis reveals an ultrastructural pattern of NompC that is structurally and mechanically optimized for the sensory functions of campaniform mechanoreceptors.


Asunto(s)
Proteínas de Drosophila , Mecanorreceptores , Mecanotransducción Celular , Orgánulos , Canales de Potencial de Receptor Transitorio , Animales , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Mecanorreceptores/química , Mecanorreceptores/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Orgánulos/química , Orgánulos/genética , Orgánulos/metabolismo , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
7.
Traffic ; 20(8): 601-617, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206952

RESUMEN

Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which, however, cannot be resolved by diffraction-limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional subdomains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single-molecule photo-switching are opposed. Here, we developed a novel superCLEM workflow that combines triple-color SMLM (dSTORM & PALM) and electron tomography using semi-thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labeled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nanodomains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub-compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Endosomas/ultraestructura , Imagen Individual de Molécula/métodos , Endosomas/metabolismo , Células HeLa , Humanos , Proteínas de Unión al GTP rab5/metabolismo
8.
BMC Biol ; 18(1): 31, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188449

RESUMEN

BACKGROUND: Metabolic activity alternates between high and low states during different stages of an organism's life cycle. During the transition from growth to quiescence, a major metabolic shift often occurs from oxidative phosphorylation to glycolysis and gluconeogenesis. We use the entry of Caenorhabditis elegans into the dauer larval stage, a developmentally arrested stage formed in response to harsh environmental conditions, as a model to study the global metabolic changes and underlying molecular mechanisms associated with growth to quiescence transition. RESULTS: Here, we show that the metabolic switch involves the concerted activity of several regulatory pathways. Whereas the steroid hormone receptor DAF-12 controls dauer morphogenesis, the insulin pathway maintains low energy expenditure through DAF-16/FoxO, which also requires AAK-2/AMPKα. DAF-12 and AAK-2 separately promote a shift in the molar ratios between competing enzymes at two key branch points within the central carbon metabolic pathway diverting carbon atoms from the TCA cycle and directing them to gluconeogenesis. When both AAK-2 and DAF-12 are suppressed, the TCA cycle is active and the developmental arrest is bypassed. CONCLUSIONS: The metabolic status of each developmental stage is defined by stoichiometric ratios within the constellation of metabolic enzymes driving metabolic flux and controls the transition between growth and quiescence.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Diapausa/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo
9.
Biol Cell ; 109(12): 391-399, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28985001

RESUMEN

The ADP-ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin-independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteína Coat de Complejo I/metabolismo , Homeostasis/fisiología , Lípidos/fisiología , Orgánulos/fisiología , Vesículas Transportadoras/fisiología , Animales , Transporte Biológico , Humanos
10.
Proc Natl Acad Sci U S A ; 112(20): E2620-9, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941378

RESUMEN

Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin-proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome.


Asunto(s)
Dictyostelium/metabolismo , Priones/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteoma/metabolismo , Deficiencias en la Proteostasis/metabolismo , Dictyostelium/genética , Electroforesis en Gel de Poliacrilamida , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Proteína Huntingtina , Microscopía Electrónica , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Proteoma/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nat Chem Biol ; 10(4): 281-5, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24584102

RESUMEN

Survival of nematode species depends on how successfully they disperse in the habitat and find a new host. As a new strategy for collective host finding in the nematode Pristionchus pacificus, dauer larvae synthesize an extremely long-chain polyunsaturated wax ester (nematoil) that covers the surface of the animal. The oily coat promotes congregation of up to one thousand individuals into stable 'dauer towers' that can reach a beetle host more easily.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Nematodos/fisiología , Ceras , Animales , Evolución Biológica , Escarabajos/parasitología , Ecosistema , Ésteres , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Larva , Metabolismo de los Lípidos/fisiología , Lípidos/química
12.
Biol Cell ; 105(12): 561-75, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24117459

RESUMEN

BACKGROUND INFORMATION: Hepatocytes, which perform the main functions of the liver, are particularly vulnerable to toxic agents such as cadmium, an environmental pollutant. To identify the molecular targets for cadmium in hepatocytes, we have studied the effects of CdCl2 on the hybrid cell line WIF-B9 that exhibits stable structural and functional hepatocytic polarity. RESULTS: We showed that the toxicity of CdCl2 (1 µM, 24 h) resulted in a reduction in direct intercellular communication (via gap junctions) and in an increase in paracellular permeability (decrease in the sealing of tight junctions). These effects were not related to changes in the expression of the key proteins involved, Cx32 and claudin 2, the first being constitutive of gap junctions and the second of tight junctions in this cell line. Using immunofluorescence experiments, we observed a change in the location of Cx32 and claudin 2: these two proteins were less often found in the tight junction network that closes the bile canaliculi (BC). In control cells, 'Proximity Ligation Assay' (PLA Duolink®) has confirmed in situ that molecules of claudin 2 and Cx32 are very close to each other at the BC (probably less than 16 nm). This was no longer the case after treatment with CdCl2 . Localisation of occludin and Cx32 relative to each other was not modified by CdCl2 , but CdCl2 increased the PLA signal between molecules of JAM-A and Cx32. Finally, examination of freeze-fracture replicas obtained from cultures treated with CdCl2 showed the disruption of the network of tight junctions and the depletion or the disintegration of the junctional plaques associated with tight junctions. CONCLUSIONS: This study demonstrates in situ the changes induced by cadmium on the organisation of cell-cell junctions and points out the importance of the association Cx32/claudin 2 for the maintenance of normal hepatocyte functions.


Asunto(s)
Cadmio/metabolismo , Uniones Comunicantes/metabolismo , Hepatocitos/metabolismo , Hígado/citología , Proteínas de Uniones Estrechas/metabolismo , Línea Celular , Células Cultivadas , Hepatocitos/citología , Humanos , Hígado/metabolismo , Uniones Estrechas/metabolismo , Andamios del Tejido
13.
Proc Natl Acad Sci U S A ; 108(19): 7679-84, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21518895

RESUMEN

Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters.


Asunto(s)
Nanotubos de Péptidos/química , Nanotubos de Péptidos/ultraestructura , Aminoácidos Aromáticos/química , Microscopía Electrónica , Modelos Moleculares , Estructura Molecular , Nanotecnología , Péptidos Cíclicos/química , Dispersión del Ángulo Pequeño , Dióxido de Silicio/química , Somatostatina/análogos & derivados , Somatostatina/química , Difracción de Rayos X
14.
J Am Soc Nephrol ; 24(7): 1045-52, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23744886

RESUMEN

Aquaporin-1 (AQP1) facilitates the osmotic transport of water across the capillary endothelium, among other cell types, and thereby has a substantial role in ultrafiltration during peritoneal dialysis. At present, pharmacologic agents that enhance AQP1-mediated water transport, which would be expected to increase the efficiency of peritoneal dialysis, are not available. Here, we describe AqF026, an aquaporin agonist that is a chemical derivative of the arylsulfonamide compound furosemide. In the Xenopus laevis oocyte system, extracellular AqF026 potentiated the channel activity of human AQP1 by >20% but had no effect on channel activity of AQP4. We found that the intracellular binding site for AQP1 involves loop D, a region associated with channel gating. In a mouse model of peritoneal dialysis, AqF026 enhanced the osmotic transport of water across the peritoneal membrane but did not affect the osmotic gradient, the transport of small solutes, or the localization and expression of AQP1 on the plasma membrane. Furthermore, AqF026 did not potentiate water transport in Aqp1-null mice, suggesting that indirect mechanisms involving other channels or transporters were unlikely. Last, in a mouse gastric antrum preparation, AqF026 did not affect the Na-K-Cl cotransporter NKCC1. In summary, AqF026 directly and specifically potentiates AQP1-mediated water transport, suggesting that it deserves additional investigation for applications such as peritoneal dialysis or clinical situations associated with defective water handling.


Asunto(s)
Acuaporina 1/agonistas , Agua Corporal/metabolismo , Peritoneo/metabolismo , Sulfonamidas/farmacología , ortoaminobenzoatos/farmacología , Animales , Acuaporina 1/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Agua Corporal/efectos de los fármacos , Humanos , Ratones , Diálisis Peritoneal , Sulfonamidas/química , Xenopus laevis , ortoaminobenzoatos/química
15.
Elife ; 132024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446032

RESUMEN

Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.


Asunto(s)
Adhesiones Focales , Aparato de Golgi , Humanos , Células CACO-2 , Citoesqueleto de Actina , Movimiento Celular , Proteínas de Transporte Vesicular
16.
Traffic ; 12(8): 1084-97, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21554509

RESUMEN

The Rab GTPase-activating proteins (GAP) Gyp5p and Gyl1p are involved in the control of polarized exocytosis at the small-bud stage in Saccharomyces cerevisiae. Both Gyp5p and Gyl1p interact with the N-Bin1/Amphiphysin/Rvs167 (BAR) domain protein Rvs167p, but the biological function of this interaction is unclear. We show here that Gyp5p and Gyl1p recruit Rvs167p to the small-bud tip, where it plays a role in polarized exocytosis. In gyp5Δgyl1Δ cells, Rvs167p is not correctly localized to the small-bud tip. Both P473L mutation in the SH3 domain of Rvs167p and deletion of the proline-rich regions of Gyp5p and Gyl1p disrupt the interaction of Rvs167p with Gyp5p and Gyl1p and impair the localization of Rvs167p to the tips of small buds. We provide evidence for the accumulation of secretory vesicles in small buds of rvs167Δ cells and for defective Bgl2p secretion in rvs167Δ cultures enriched in small-budded cells at 13°C, implicating Rvs167p in polarized exocytosis. Moreover, both the accumulation of secretory vesicles in Rvs167p P473L cells cultured at 13°C and secretion defects in cells producing Gyp5p and Gyl1p without proline-rich regions strongly suggest that the function of Rvs167p in exocytosis depends on its ability to interact with Gyp5p and Gyl1p.


Asunto(s)
Exocitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Exocitosis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Prolina/genética , Prolina/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/genética , Dominios Homologos src
17.
J Struct Biol ; 178(2): 129-38, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22182731

RESUMEN

The ability to rapidly assess microtubule number in 3D image stacks from electron tomograms is essential for collecting statistically meaningful data sets. Here we implement microtubule tracing using 3D template matching. We evaluate our results by comparing the automatically traced centerlines to manual tracings in a large number of electron tomograms of the centrosome of the early Caenorhabditis elegans embryo. Furthermore, we give a qualitative description of the tracing results for three other types of samples. For dual-axis tomograms, the automatic tracing yields 4% false negatives and 8% false positives on average. For single-axis tomograms, the accuracy of tracing is lower (16% false negatives and 14% false positives) due to the missing wedge in electron tomography. We also implemented an editor specifically designed for correcting the automatic tracing. Besides, this editor can be used for annotating microtubules. The automatic tracing together with a manual correction significantly reduces the amount of manual labor for tracing microtubule centerlines so that large-scale analysis of microtubule network properties becomes feasible.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microtúbulos , Animales , Caenorhabditis elegans , Centrosoma , Embrión no Mamífero , Células HeLa , Humanos
18.
Nat Commun ; 13(1): 3781, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773250

RESUMEN

The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional 'volume' electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo 'inflations' linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.


Asunto(s)
Candida albicans , Hifa , Candida albicans/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Hifa/metabolismo , Membrana Mucosa/metabolismo
19.
Front Oncol ; 12: 958155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387192

RESUMEN

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

20.
Mol Genet Genomics ; 285(5): 415-25, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21442328

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and thereby provides the precursors required for DNA synthesis and repair. In an attempt to test cell resistance to a permanent replicational stress, we constructed a mutant Saccharomyces cerevisiae strain containing exclusively nonrecyclable catalytic subunits of RNR that become inactivated following the reduction of one ribonucleoside diphosphate. In this rnr1C883A rnr3Δ mutant, the synthesis of each deoxyribonucleotide thus requires the production of one Rnr1C883A protein, which means that 26 million Rnr1C883A proteins (half the protein complement of a wild-type cell) have to be produced during each cell cycle. rnr1C883A rnr3Δ cells grow under constant replicational stress, as evidenced by the constitutive activation of the checkpoint effector Rad53, and their S phase is considerably extended compared to the wild type. rnr1C883A rnr3Δ mutants also display additional abnormalities such as a median cell volume increased by a factor of 8, and the presence of massive inclusion bodies. However, they exhibit a good plating efficiency and can be propagated indefinitely. rnr1C883A rnr3Δ cells, which can be used as a protein overexpression system, thus illustrate the robustness of S. cerevisiae to multiple physiological parameters.


Asunto(s)
Ribonucleótido Reductasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Dominio Catalítico , Cuerpos de Inclusión/metabolismo , Mutación , Ribonucleótido Reductasas/química , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA