Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23396, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38156414

RESUMEN

γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-ß. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Presenilina-2 , Humanos , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Endopeptidasas/metabolismo , Células HEK293 , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
2.
J Neurochem ; 163(1): 53-67, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36000528

RESUMEN

Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.


Asunto(s)
Enfermedad de Alzheimer , Lipoproteínas HDL , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Apolipoproteína C-III/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555450

RESUMEN

Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Insulina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Encéfalo/patología , Insulina Regular Humana/uso terapéutico
4.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011410

RESUMEN

γ-Secretase is an intramembrane aspartyl protease that is important in regulating normal cell physiology via cleavage of over 100 transmembrane proteins, including Amyloid Precursor Protein (APP) and Notch family receptors. However, aberrant proteolysis of substrates has implications in the progression of disease pathologies, including Alzheimer's disease (AD), cancers, and skin disorders. While several γ-secretase inhibitors have been identified, there has been toxicity observed in clinical trials associated with non-selective enzyme inhibition. To address this, γ-secretase modulators have been identified and pursued as more selective agents. Recent structural evidence has provided an insight into how γ-secretase inhibitors and modulators are recognized by γ-secretase, providing a platform for rational drug design targeting this protease. In this study, docking- and pharmacophore-based screening approaches were evaluated for their ability to identify, from libraries of known inhibitors and modulators with decoys with similar physicochemical properties, γ-secretase inhibitors and modulators. Using these libraries, we defined strategies for identifying both γ-secretase inhibitors and modulators incorporating an initial pharmacophore-based screen followed by a docking-based screen, with each strategy employing distinct γ-secretase structures. Furthermore, known γ-secretase inhibitors and modulators were able to be identified from an external set of bioactive molecules following application of the derived screening strategies. The approaches described herein will inform the discovery of novel small molecules targeting γ-secretase.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Descubrimiento de Drogas/métodos , Inhibidores y Moduladores de Gamma Secretasa/química , Modelos Moleculares , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Inhibidores y Moduladores de Gamma Secretasa/farmacología , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Reproducibilidad de los Resultados , Relación Estructura-Actividad
5.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147803

RESUMEN

Type 2 diabetes (T2D) and Alzheimer's disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (ß-Amyloid; Aß). Both IAPP and Aß can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Choque Térmico/metabolismo , Enfermedad de Alzheimer/complicaciones , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Espacio Extracelular/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Humanos , Inflamación , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Proteínas tau/metabolismo
6.
FASEB J ; 31(12): 5409-5418, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28808140

RESUMEN

Alzheimer's disease (AD) and type 2 diabetes (T2D) present a significant risk to each other. AD and T2D are characterized by deposition of cerebral amyloid-ß (Aß) and pancreatic human islet amyloid polypeptide (hIAPP), respectively. We investigated the role of amyloidogenic proteins in the interplay between these diseases. A novel double transgenic mouse model combining T2D and AD was generated and characterized. AD-related amyloid transgenic mice coexpressing hIAPP displayed peripheral insulin resistance, hyperglycemia, and glucose intolerance. Aß and IAPP amyloid co-deposition increased tau phosphorylation, and a reduction in pancreatic ß-cell mass was detected in islets. Increased brain Aß deposition and tau phosphorylation and reduced insulin levels and signaling were accompanied by extensive synaptic loss and decreased neuronal counts. Aß immunization rescued the peripheral insulin resistance and hyperglycemia, suggesting a role for Aß in T2D pathogenesis for individuals predisposed to AD. These findings demonstrate that Aß and IAPP are key factors in the overlapping pathologies of AD and T2D.-Wijesekara, N., Ahrens, R., Sabale, M., Wu, L., Ha, K., Verdile, G., Fraser, P. E. Amyloid-ß and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Western Blotting , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Proteínas tau/metabolismo
7.
J Biol Chem ; 291(2): 547-59, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26538562

RESUMEN

Although the formation of ß-amyloid (Aß) deposits in the brain is a hallmark of Alzheimer disease (AD), the soluble oligomers rather than the mature amyloid fibrils most likely contribute to Aß toxicity and neurodegeneration. Thus, the discovery of agents targeting soluble Aß oligomers is highly desirable for early diagnosis prior to the manifestation of a clinical AD phenotype and also more effective therapies. We have previously reported that a novel 15-amino acid peptide (15-mer), isolated via phage display screening, targeted Aß and attenuated its neurotoxicity (Taddei, K., Laws, S. M., Verdile, G., Munns, S., D'Costa, K., Harvey, A. R., Martins, I. J., Hill, F., Levy, E., Shaw, J. E., and Martins, R. N. (2010) Neurobiol. Aging 31, 203-214). The aim of the current study was to generate and biochemically characterize analogues of this peptide with improved stability and therapeutic potential. We demonstrated that a stable analogue of the 15-amino acid peptide (15M S.A.) retained the activity and potency of the parent peptide and demonstrated improved proteolytic resistance in vitro (stable to t = 300 min, c.f. t = 30 min for the parent peptide). This candidate reduced the formation of soluble Aß42 oligomers, with the concurrent generation of non-toxic, insoluble aggregates measuring up to 25-30 nm diameter as determined by atomic force microscopy. The 15M S.A. candidate directly interacted with oligomeric Aß42, as shown by coimmunoprecipitation and surface plasmon resonance/Biacore analysis, with an affinity in the low micromolar range. Furthermore, this peptide bound fibrillar Aß42 and also stained plaques ex vivo in brain tissue from AD model mice. Given its multifaceted ability to target monomeric and aggregated Aß42 species, this candidate holds promise for novel preclinical AD imaging and therapeutic strategies.


Asunto(s)
Amiloide/metabolismo , Neurotoxinas/toxicidad , Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Administración Intravenosa , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Inmunoprecipitación , Masculino , Ratones Transgénicos , Estabilidad Proteica/efectos de los fármacos , Reproducibilidad de los Resultados , Solubilidad , Resonancia por Plasmón de Superficie , Tritio/metabolismo
8.
Hum Mol Genet ; 24(13): 3662-78, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25814654

RESUMEN

The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for γ-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimer's disease (FAD) only the K115Efx10 mutation of PSEN2 causes truncation of the open reading frame. If translated, the truncated product would resemble a naturally occurring isoform of PSEN2 named PS2V that is induced by hypoxia and found at elevated levels in late onset Alzheimer's disease (AD) brains. The function of PS2V is largely unexplored. We show that zebrafish possess a PS2V-like isoform, PS1IV, produced from the fish's PSEN1 rather than PSEN2 orthologous gene. The molecular mechanism controlling formation of PS2V/PS1IV was probably present in the ancient common ancestor of the PSEN1 and PSEN2 genes. Human PS2V and zebrafish PS1IV have highly divergent structures but conserved abilities to stimulate γ-secretase activity and to suppress the unfolded protein response (UPR) under hypoxia. The putative protein truncation caused by K115Efx10 resembles PS2V in its ability to increase γ-secretase activity and suppress the UPR. This supports increased Aß levels as a common link between K115Efx10 early onset AD and sporadic, late onset AD. The ability of mutant variants of PS2V to stimulate γ-secretase activity partially correlates with their ability to suppress the UPR. The cytosolic, transmembrane and luminal domains of PS2V are all critical to its γ-secretase and UPR-suppression activities. Our data support a model in which chronic hypoxia in aged brains promotes excessive Notch signalling and accumulation of Aß that contribute to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Respuesta de Proteína Desplegada , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Evolución Biológica , Femenino , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Masculino , Proteínas de la Membrana/genética , Péptidos/genética , Presenilina-1/genética , Presenilina-2/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Neuropsychol Rev ; 27(1): 62-80, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092015

RESUMEN

Successfully assisting older adults to maintain or improve cognitive function, particularly when they are dealing with neurodegenerative disorders such as Alzheimer's disease (AD), remains a major challenge. Cognitive training may stimulate neuroplasticity thereby increasing cognitive and brain reserve. Commercial brain training programs are computerized, readily-available, easy-to-administer and adaptive but often lack supportive data and their clinical validation literature has not been previously reviewed. Therefore, in this review, we report the characteristics of commercially available brain training programs, critically assess the number and quality of studies evaluating the empirical evidence of these programs for promoting brain health in healthy older adults, and discuss underlying causal mechanisms. We searched PubMed, Google Scholar and each program's website for relevant studies reporting the effects of computerized cognitive training on cognitively healthy older adults. The evidence for each program was assessed via the number and quality (PEDro score) of studies, including Randomized Control Trials (RCTs). Programs with clinical studies were subsequently classified as possessing Level I, II or III evidence. Out of 18 identified programs, 7 programs were investigated in 26 studies including follow-ups. Two programs were identified as possessing Level I evidence, three programs demonstrated Level II evidence and an additional two programs demonstrated Level III evidence. Overall, studies showed generally high methodological quality (average PEDro score = 7.05). Although caution must be taken regarding any potential bias due to selective reporting, current evidence supports that at least some commercially available computerized brain training products can assist in promoting healthy brain aging.


Asunto(s)
Envejecimiento , Trastornos del Conocimiento/prevención & control , Terapia Cognitivo-Conductual/métodos , Terapia Asistida por Computador/métodos , Humanos
10.
Hum Mol Genet ; 23(3): 602-17, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24101600

RESUMEN

PRESENILIN1 (PSEN1) is the major locus for mutations causing familial Alzheimer's disease (FAD) and is also mutated in Pick disease of brain, familial acne inversa and dilated cardiomyopathy. It is a critical facilitator of Notch signalling and many other signalling pathways and protein cleavage events including production of the Amyloidß (Aß) peptide from the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). We previously reported that interference with splicing of transcripts of the zebrafish orthologue of PSEN1 creates dominant negative effects on Notch signalling. Here, we extend this work to show that various truncations of human PSEN1 (or zebrafish Psen1) protein have starkly differential effects on Notch signalling and cleavage of zebrafish Appa (a paralogue of human APP). Different truncations can suppress or stimulate Notch signalling but not Appa cleavage and vice versa. The G183V mutation possibly causing Pick disease causes production of aberrant transcripts truncating the open reading frame after exon 5 sequence. We show that the truncated protein potentially translated from these transcripts avidly incorporates into very stable Psen1-dependent higher molecular weight complexes and suppresses cleavage of Appa but not Notch signalling. In contrast, the truncated protein potentially produced by the P242LfsX11 acne inversa mutation has no effect on Appa cleavage but, unexpectedly, enhances Notch signalling. Our results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo , Receptores Notch/metabolismo , Secuencia de Aminoácidos , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión no Mamífero , Exones , Células HEK293 , Hidradenitis Supurativa/genética , Humanos , Membranas Intracelulares/metabolismo , Ratones , Datos de Secuencia Molecular , Peso Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Pick/genética , Presenilina-1/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Receptores Notch/genética , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Neurobiol Dis ; 84: 22-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25926349

RESUMEN

A growing body of evidence links type-2 diabetes (T2D) with dementia and neurodegenerative diseases such as Alzheimer's disease (AD). AD is the most common form of dementia and is characterised neuropathologically by the accumulation of extracellular beta amyloid (Aß) peptide aggregates and intracellular hyper-phosphorylated tau protein, which are thought to drive and/or accelerate inflammatory and oxidative stress processes leading to neurodegeneration. Although the precise mechanism remains unclear, T2D can exacerbate these neurodegenerative processes. Brain atrophy, reduced cerebral glucose metabolism and CNS insulin resistance are features of both AD and T2D. Cell culture and animal studies have indicated that the early accumulation of Aß may play a role in CNS insulin resistance and impaired insulin signalling. From the viewpoint of insulin resistance and impaired insulin signalling in the brain, these are also believed to initiate other aspects of brain injury, including inflammatory and oxidative stress processes. Here we review the clinical and experimental pieces of evidence that link these two chronic diseases of ageing, and discuss underlying mechanisms. The evaluation of treatments for the management of diabetes in preclinical, and clinical studies and trials for AD will also be discussed.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Encéfalo/metabolismo , Humanos
12.
Horm Behav ; 76: 81-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26122291

RESUMEN

This article is part of a Special Issue "SBN 2014". Hormonal changes associated with ageing have been implicated in the pathogenesis of Alzheimer's disease (AD), the most common form of dementia. Reductions in serum testosterone and increases in luteinizing hormone (LH) are established AD risk factors for dementia in men and have important roles in modulating AD pathogenesis. One of the defining features of AD is the accumulation of amyloid-beta (Aß) in the brain, which has a key role in the neurodegenerative cascade. Both testosterone and LH have been shown to modulate CNS Aß accumulation in animal studies, and associations with cerebral amyloid load in human studies have supported this. The underlying mechanisms by which these hormones modulate Aß accumulation and contribute to neurodegeneration are not completely understood, however they have been shown to regulate Aß metabolism, enhance its clearance and alter the processing of its parent molecule, the amyloid precursor protein. This review will discuss underlying mechanisms by which testosterone and LH modulate Aß and provide an update on therapeutic approaches targeting these hormones.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hormona Luteinizante/metabolismo , Testosterona/metabolismo , Animales , Humanos
13.
Mediators Inflamm ; 2015: 105828, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26693205

RESUMEN

Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-ß (Aß) protein accumulation, and mitochondrial dysfunction link T2DM and AD.


Asunto(s)
Enfermedad de Alzheimer/etiología , Diabetes Mellitus Tipo 2/etiología , Inflamación/complicaciones , Resistencia a la Insulina , Obesidad/etiología , Estrés Oxidativo , Péptidos beta-Amiloides/metabolismo , Animales , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hemo-Oxigenasa 1/análisis , Humanos , NADP/metabolismo , eIF-2 Quinasa/fisiología
14.
Commun Biol ; 7(1): 643, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802514

RESUMEN

Studies suggest links between diabetes and gastrointestinal (GI) traits; however, their underlying biological mechanisms remain unclear. Here, we comprehensively assess the genetic relationship between type 2 diabetes (T2D) and GI disorders. Our study demonstrates a significant positive global genetic correlation of T2D with peptic ulcer disease (PUD), irritable bowel syndrome (IBS), gastritis-duodenitis, gastroesophageal reflux disease (GERD), and diverticular disease, but not inflammatory bowel disease (IBD). We identify several positive local genetic correlations (negative for T2D - IBD) contributing to T2D's relationship with GI disorders. Univariable and multivariable Mendelian randomisation analyses suggest causal effects of T2D on PUD and gastritis-duodenitis and bidirectionally with GERD. Gene-based analyses reveal a gene-level genetic overlap between T2D and GI disorders and identify several shared genes reaching genome-wide significance. Pathway-based study implicates leptin (T2D - IBD), thyroid, interferon, and notch signalling (T2D - IBS), abnormal circulating calcium (T2D - PUD), cardiovascular, viral, proinflammatory and (auto)immune-mediated mechanisms in T2D and GI disorders. These findings support a risk-increasing genetic overlap between T2D and GI disorders (except IBD), implicate shared biological pathways with putative causality for certain T2D - GI pairs, and identify targets for further investigation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Gastrointestinales , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/genética , Humanos , Enfermedades Gastrointestinales/genética , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana
15.
Biochim Biophys Acta ; 1812(3): 346-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20920580

RESUMEN

Alzheimer's disease is the most prevalent form of neurodegenerative disease. Despite many years of intensive research our understanding of the molecular events leading to this pathology is far from complete. No effective treatments have been defined and questions surround the validity and utility of existing animal models. The zebrafish (and, in particular, its embryos) is a malleable and accessible model possessing a vertebrate neural structure and genome. Zebrafish genes orthologous to those mutated in human familial Alzheimer's disease have been defined. Work in zebrafish has permitted discovery of unique characteristics of these genes that would have been difficult to observe with other models. In this brief review we give an overview of Alzheimer's disease and transgenic animal models before examining the current contribution of zebrafish to this research area. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Modelos Animales de Enfermedad , Pez Cebra/genética , Enfermedad de Alzheimer/patología , Animales , Humanos
16.
Front Aging Neurosci ; 14: 780602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250535

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common form of dementia worldwide. The classical AD brain is characterized by extracellular deposition of amyloid-ß (Aß) protein aggregates as senile plaques and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated forms of the microtubule-associated protein Tau. There has been limited success in clinical trials for some proposed therapies for AD, so attention has been drawn toward using alternative approaches, including prevention strategies. As a result, nutraceuticals have become attractive compounds for their potential neuroprotective capabilities. The objective of the present study was to derive a synergistic nutraceutical combination in vitro that may act as a potential preventative therapy for AD. The compounds of interest were docosahexaenoic acid (DHA), luteolin (LUT), and urolithin A (UA). The cell viability and cytotoxicity assays MTS and LDH were used to evaluate the compounds individually and in two-compound combinations, for their ability to inhibit Aß1-42-induced toxicity in human neuroblastoma BE(2)-M17 cells. The LDH-derived% protection values were used in the program CompuSyn v.1.0 to calculate the combination index (CI) of the two-compound combinations. The software-predicted potentially synergistic (CI < 1) two-compound combinations were validated using CellTiter Glo assay. Finally, a three-compound combination was predicted (D5L5U5) and shown to be the most effective at inhibiting Aß1-42-induced toxicity. The synergistic combination, D5L5U5 warrants further research for its mechanism of action; however, it can serve as a basis to develop an advanced functional food for the prevention or co-treatment of AD.

17.
Neurobiol Aging ; 114: 38-48, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35381406

RESUMEN

Mounting evidence implicates insulin resistance (IR) with reduced cognition, increased dementia risk and changes in Alzheimer's disease biomarkers. It's unclear how, and at what stage IR has the greatest impact on Alzheimer's disease biomarker progression indicative of cognitive decline. Exploration of potential factors influencing this relationship continue. We have previously reported IR to be associated with cognitive function, and increased CSF tau in a cognitively unimpaired cohort. Now, we aimed to determine if CSF total (t-tau) or phosphorylated tau (p-tau) mediated the relationship between HOMA-IR and cognition, and explore sex or amyloid-ß (Aß) biomarkers as moderators of this relationship. Mediation analysis demonstrated that CSF tau does not directly influence the association between HOMA-IR and cognition. Moderation analysis revealed CSF Aß42 moderates the relationships between HOMA-IR and CSF tau. The combination of lower CSF Aß42 and higher HOMA-IR was associated with increases in CSF tau. The CSF Aß42 moderation finding has potential to be considered when assessing type 2 diabetic risk for tau pathology and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Resistencia a la Insulina , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Biomarcadores , Cognición , Humanos , Fragmentos de Péptidos , Proteínas tau
18.
Neuroendocrinology ; 94(4): 313-22, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21985789

RESUMEN

BACKGROUND/AIMS: Luteinizing hormone (LH) has been shown to alter the metabolism of beta amyloid (Aß), a key protein in Alzheimer's disease (AD) pathogenesis. While LH and components required for LH receptor signalling are present in the brain, their role in the CNS remains unclear. In vitro, LH has been shown to facilitate neurosteroid production and alter Aß metabolism. However, whether LH can directly modulate cerebral Aß levels in vivo has not previously been studied. In this study, we investigated the effect of chronic administration of LH to the guinea pig CNS on cerebral Aß levels. METHODS: Gonadectomised male animals were administered, via cortical placement, either placebo or LH slow-release pellets. At 14 and 28 days after treatment, animals were sacrificed. Brain, plasma and CSF were collected and Aß levels measured via ELISA. Levels of the Aß precursor protein (APP) and the neurosteroidogenic enzyme cytochrome P450 side-chain cleavage enzyme (P450scc) were also assayed. RESULTS: An increase in CSF Aß40 levels was observed 28 days following treatment. These CSF data also reflected changes in Aß40 levels observed in brain homogenates. No change was observed in plasma Aß40 levels but APP and its C-terminal fragments (APP-CTF) were significantly increased in response to LH exposure. Protein expression of P450scc was increased after 28 days of LH exposure, suggesting activation of the LH receptor. CONCLUSION: These data indicate that direct exposure of guinea pig CNS to LH results in altered brain Aß levels, perhaps due to altered APP expression/metabolism.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hormona Luteinizante/farmacología , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Cobayas , Hipocampo/metabolismo , Masculino , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/líquido cefalorraquídeo
19.
Front Aging Neurosci ; 13: 781468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35264941

RESUMEN

Evidence to date suggests the consumption of food rich in bioactive compounds, such as polyphenols, flavonoids, omega-3 fatty acids may potentially minimize age-related cognitive decline. For neurodegenerative diseases, such as Alzheimer's disease (AD), which do not yet have definitive treatments, the focus has shifted toward using alternative approaches, including prevention strategies rather than disease reversal. In this aspect, certain nutraceuticals have become promising compounds due to their neuroprotective properties. Moreover, the multifaceted AD pathophysiology encourages the use of multiple bioactive components that may be synergistic in their protective roles when combined. The objective of the present study was to determine mechanisms of action underlying the inhibition of Aß1-42-induced toxicity by a previously determined, three-compound nutraceutical combination D5L5U5 for AD. In vitro experiments were carried out in human neuroblastoma BE(2)-M17 cells for levels of ROS, ATP mitophagy, and mitobiogenesis. The component compounds luteolin (LUT), DHA, and urolithin A (UA) were independently protective of mitochondria; however, the D5L5U5 preceded its single constituents in all assays used. Overall, it indicated that D5L5U5 had potent inhibitory effects against Aß1-42-induced toxicity through protecting mitochondria. These mitoprotective activities included minimizing oxidative stress, increasing ATP and inducing mitophagy and mitobiogenesis. However, this synergistic nutraceutical combination warrants further investigations in other in vitro and in vivo AD models to confirm its potential to be used as a preventative therapy for AD.

20.
Nutrients ; 13(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34836000

RESUMEN

Mitochondrial dysfunction including deficits of mitophagy is seen in aging and neurodegenerative disorders including Alzheimer's disease (AD). Apart from traditionally targeting amyloid beta (Aß), the main culprit in AD brains, other approaches include investigating impaired mitochondrial pathways for potential therapeutic benefits against AD. Thus, a future therapy for AD may focus on novel candidates that enhance optimal mitochondrial integrity and turnover. Bioactive food components, known as nutraceuticals, may serve as such agents to combat AD. Urolithin A is an intestinal microbe-derived metabolite of a class of polyphenols, ellagitannins (ETs). Urolithin A is known to exert many health benefits. Its antioxidant, anti-inflammatory, anti-atherogenic, anti-Aß, and pro-mitophagy properties are increasingly recognized. However, the underlying mechanisms of urolithin A in inducing mitophagy is poorly understood. This review discusses the mitophagy deficits in AD and examines potential molecular mechanisms of its activation. Moreover, the current knowledge of urolithin A is discussed, focusing on its neuroprotective properties and its potential to induce mitophagy. Specifically, this review proposes potential mechanisms by which urolithin A may activate and promote mitophagy.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cumarinas/uso terapéutico , Microbiota , Mitofagia , Animales , Cumarinas/farmacología , Humanos , Longevidad/efectos de los fármacos , Microbiota/efectos de los fármacos , Mitofagia/efectos de los fármacos , Polifenoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA