RESUMEN
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaßLIM1a. CaßLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaßLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Asunto(s)
Ascomicetos , Cicer , Factores de Transcripción , Ascomicetos/genética , Ascomicetos/metabolismo , Cicer/genética , Cicer/metabolismo , Cicer/microbiología , Lignina/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Regeneration is a fascinating phenomenon observed in various organisms across the animal kingdom. Different orders of class Insecta are reported to possess comprehensive regeneration abilities. Several signalling molecules, such as morphogens, growth factors, and others trigger a cascade of events that promote wound healing, blastema formation, growth, and repatterning. Furthermore, epigenetic regulation has emerged as a critical player in regulating the process of regeneration. This report highlights the major breakthrough research on wound healing and tissue regeneration. Exploring and reviewing the molecular basis of regeneration can be helpful in the area of regenerative medicine advancements. The understanding gathered from this framework can potentially contribute to hypothesis designing with implications in the field of synthetic biology and human health.
Asunto(s)
Epigénesis Genética , Transducción de Señal , Animales , Humanos , InsectosRESUMEN
The eukaryotic cytoskeleton is a complex scaffold consisting of actin filaments, intermediate filaments, and microtubules. Although fungi and plants lack intermediate filaments, their dynamic structural network of actin filaments and microtubules regulates cell shape, division, polarity, and vesicular trafficking. However, the specialized functions of the cytoskeleton during plant-fungus interactions remain elusive. Recent reports demonstrate that the plant cytoskeleton responds to signal cues and pathogen invasion through remodeling, thereby coordinating immune receptor trafficking, membrane microdomain formation, aggregation of organelles, and transport of defense compounds. Emerging evidence also suggests that cytoskeleton remodeling further regulates host immunity by triggering salicylic acid signaling, reactive oxygen species generation, and pathogenesis-related gene expression. During host invasion, fungi undergo systematic cytoskeleton remodeling, which is crucial for successful host penetration and colonization. Furthermore, phytohormones act as an essential regulator of plant cytoskeleton dynamics and are frequently targeted by fungal effectors to disrupt the host's growth-defense balance. This review discusses recent advances in the understanding of cytoskeleton dynamics during plant-fungus interactions and provides novel insights into the relationship between phytohormones and cytoskeleton remodeling upon pathogen attack. We also highlight the importance of fungal cytoskeleton rearrangements during host colonization and suggest directions for future investigations in this field.
Asunto(s)
Citoesqueleto , Hongos , Interacciones Huésped-Patógeno , Plantas , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Plantas/microbiología , Plantas/metabolismo , Plantas/inmunología , Interacciones Huésped-Patógeno/fisiología , Hongos/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunologíaRESUMEN
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Asunto(s)
Metaboloma , Metabolómica , Metabolómica/métodos , Metaboloma/fisiología , Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Plantas/metabolismoRESUMEN
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Asunto(s)
Histonas , Plantas , Histonas/genética , Acetilación , Plantas/genética , Procesamiento Proteico-Postraduccional , Cromatina/metabolismo , Histona Acetiltransferasas/metabolismoRESUMEN
BACKGROUND: Regeneration is a fascinating phenomenon that has intrigued scientists for a long time. Cheilomenes sexmaculata (Fabricius), a zig-zag ladybird beetle, possesses a high capacity for limb regeneration. The molecular mechanics of the zig-zag ladybird beetle are under-explored. Current research trends are focused on uncovering functional genes associated with limb regeneration. Most of these investigations involve quantitative real-time PCR (qRT-PCR) for their rapid and accurate analysis of gene expression levels. Hence, a stable and suitable reference gene is required to normalize the gene expression data. METHODS AND RESULTS: In this study, five housekeeping genes were selected from the transcriptomics data (in-house unpublished data) of C. sexmaculata (Fabricius). The expression stabilities of the selected genes were evaluated under different time intervals post-amputation using geNorm, normFinder, and refFinder software. Actin was revealed to be the most stable housekeeping gene, along with elongation factor 2 and glyceraldehyde-3-phosphate dehydrogenase. A target gene named engrailed (an important segment-forming gene) was used to validate the selected reference genes. The expression levels were found to be consistent with the transcriptomics results. CONCLUSION: According to our study, actin, along with elongation factor 2 and glyceraldehyde-3-phosphate dehydrogenase, serve as the most stable reference genes and are suitable for regeneration-related research. This study is a groundbreaking effort to identify the most stable reference gene for limb regeneration in C. sexmaculata (Fabricius), and the findings can be applied to other related insect species.
Asunto(s)
Escarabajos , Perfilación de la Expresión Génica , Genes Esenciales , Reacción en Cadena en Tiempo Real de la Polimerasa , Regeneración , Animales , Escarabajos/genética , Escarabajos/fisiología , Regeneración/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Genes Esenciales/genética , Estándares de Referencia , Transcriptoma/genética , Genes de Insecto/genéticaRESUMEN
Polarized hyphal growth of filamentous pathogenic fungi is an essential event for host penetration and colonization. The long-range early endosomal trafficking during hyphal growth is crucial for nutrient uptake, sensing of host-specific cues, and regulation of effector production. Bin1/Amphiphysin/Rvs167 (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Here, we identified a F-BAR domain protein (ArF-BAR) in the necrotrophic fungus Ascochyta rabiei and demonstrate its involvement in endosome-dependent fungal virulence on the host plant Cicer arietinum. We show that ArF-BAR regulates endocytosis at the hyphal tip, localizes to the early endosomes, and is involved in actin dynamics. Functional studies involving gene knockout and complementation experiments reveal that ArF-BAR is necessary for virulence. The loss-of-function of ArF-BAR gene results in delayed formation of apical septum in fungal cells near growing hyphal tip that is crucial for host penetration, and impaired secretion of a candidate effector having secretory signal peptide for translocation across the endoplasmic reticulum membrane. The mRNA transcripts of ArF-BAR were induced in response to oxidative stress and infection. We also show that ArF-BAR is able to tubulate synthetic liposomes, suggesting the functional role of F-BAR domain in membrane tubule formation in vivo. Further, our studies identified a stress-induced transcription factor, ArCRZ1 (Calcineurin-responsive zinc finger 1), as key transcriptional regulator of ArF-BAR expression. We propose a model in which ArCRZ1 functions upstream of ArF-BAR to regulate A. rabiei virulence through a mechanism that involves endocytosis, effector secretion, and actin cytoskeleton regulation.
Asunto(s)
Actinas/metabolismo , Ascomicetos/citología , Ascomicetos/patogenicidad , Cicer/microbiología , Endocitosis , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Endocitosis/genética , Endosomas/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Liposomas/metabolismo , Mutación , Estrés Oxidativo , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas/genética , Virulencia/genéticaRESUMEN
Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7â cm, girth 0.3-1.6â cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9â mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14â mg g-1, PAve=9.79±3.03â mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07â mg g-1, DSAve=2.59±0.70â mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.
Asunto(s)
Rizoma , Saponinas , Esteroides , Trillium , Trillium/química , Saponinas/química , Saponinas/aislamiento & purificación , Rizoma/química , Cromatografía Líquida de Alta Presión , Esteroides/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Espectrometría de Masas en Tándem , HumanosRESUMEN
Fungi are one of the most diverse organisms found in our surroundings. The heterotrophic lifestyle of fungi and the ever-changing external environmental factors pose numerous challenges for their survival. Despite all adversities, fungi continuously develop new survival strategies to secure nutrition and space from their host. During host-pathogen interaction, filamentous phytopathogens in particular, effectively infect their hosts by maintaining polarised growth at the tips of hyphae. The fungal cell wall, being the prime component of host contact, plays a crucial role in fortifying the intracellular environment against the harsh external environment. Structurally, the fungal cell wall is a highly dynamic yet rigid component, responsible for maintaining cellular morphology. Filamentous pathogens actively maintain their dynamic cell wall to compensate rapid growth on the host. Additionally, they secrete effectors to dampen the sophisticated mechanisms of plant defense and initiate various downstream signaling cascades to repair the damage inflicted by the host. Thus, the fungal cell wall serves as a key modulator of fungal pathogenicity. The fungal cell wall with their associated signaling mechanisms emerge as intriguing targets for host immunity. This review comprehensively examines and summarizes the multifaceted findings of various research groups regarding the dynamics of the cell wall in filamentous fungal pathogens during host invasion.
RESUMEN
The Spot Blotch (SB) caused by hemibiotrophic fungal pathogen Bipolaris sorokiniana is one of the most devastating wheat diseases leading to 15-100% crop loss. However, the biology of Triticum-Bipolaris interactions and host immunity modulation by secreted effector proteins remain underexplored. Here, we identified a total of 692 secretory proteins including 186 predicted effectors encoded by B. sorokiniana genome. Gene Ontology categorization showed that these proteins belong to cellular, metabolic and signaling processes, and exhibit catalytic and binding activities. Further, we functionally characterized a cysteine-rich, B. sorokiniana Candidate Effector 66 (BsCE66) that was induced at 24-96 hpi during host colonization. The Δbsce66 mutant did not show vegetative growth defects or stress sensitivity compared to wild-type, but developed drastically reduced necrotic lesions upon infection in wheat plants. The loss-of-virulence phenotype was rescued upon complementing the Δbsce66 mutant with BsCE66 gene. Moreover, BsCE66 does not form homodimer and conserved cysteine residues form intra-molecular disulphide bonds. BsCE66 localizes to the host nucleus and cytosol, and triggers a strong oxidative burst and cell death in Nicotiana benthamiana. Overall, our findings demonstrate that BsCE66 is a key virulence factor that is necessary for host immunity modulation and SB disease progression. These findings would significantly improve our understanding of Triticum-Bipolaris interactions and assist in the development of SB resistant wheat varieties.
Asunto(s)
Ascomicetos , Bipolaris , Virulencia/genética , Triticum/microbiología , Cisteína/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
MAIN CONCLUSION: Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.
Asunto(s)
Fabaceae , Rhizobium , Fijación del Nitrógeno , Proteínas de Plantas/metabolismo , Leucina , Simbiosis/fisiología , Fabaceae/metabolismo , Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismoRESUMEN
MAIN CONCLUSION: This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Asunto(s)
Plantas , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estudios Prospectivos , Plantas/genética , Plantas/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Flavonoids are important plant pigments and defense compounds; understanding the transcriptional regulation of flavonoid biosynthesis may enable engineering crops with improved nutrition and stress tolerance. Here, we characterize R2R3-MYB domain subgroup 7 transcription factor CaMYB39, which regulates flavonol biosynthesis primarily in chickpea trichomes. CaMYB39 overexpression in chickpea was accompanied by a change in flux availability for the phenylpropanoid pathway, particularly flavonol biosynthesis. Lines overexpressing CaMYB39 showed higher isoflavonoid levels, suggesting its role in regulating isoflavonoid pathway. CaMYB39 transactivates the transcription of early flavonoid biosynthetic genes (EBG). FLAVONOL SYNTHASE2, an EBG, encodes an enzyme with higher substrate specificity for dihydrokaempferol than other dihydroflavonols explaining the preferential accumulation of kaempferol derivatives as prominent flavonols in chickpea. Interestingly, CaMYB39 overexpression increased trichome density and enhanced the accumulation of diverse flavonol derivatives in trichome-rich tissues. Moreover, CaMYB39 overexpression reduced reactive oxygen species levels and induced defense gene expression which aids in partially blocking the penetration efficiency of the fungal pathogen, Ascochyta rabiei, resulting in lesser symptoms, thus establishing its role against deadly Ascochyta blight (AB) disease. Overall, our study reports an instance where R2R3-MYB-SG7 member, CaMYB39, besides regulating flavonol biosynthesis, modulates diverse pathways like general phenylpropanoid, isoflavonoid, trichome density, and defense against necrotrophic fungal infection in chickpea.
Asunto(s)
Cicer , Factores de Transcripción , Factores de Transcripción/metabolismo , Cicer/genética , Cicer/metabolismo , Flavonoides , Flavonoles , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismoRESUMEN
Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Cicer , Cicer/genética , Cicer/microbiología , Transcriptoma/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
MAIN CONCLUSION: Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest. Until the advent of next-generation sequencing, the forward-genetic techniques were laborious and time-consuming. Over the last 10 years, advancements in the area of genome assembly, genotyping, large-scale data analysis, and statistical algorithms have led faster identification of genomic variations regulating the complex agronomic traits and pathogen resistance. In this review, we describe the latest developments in genome sequencing and genotyping along with a comprehensive evaluation of the last 10-year headways in forward-genetic techniques that have shifted the focus of plant research from model plants to diverse crops. We have classified the available molecular genetic methods under bulk-segregant analysis-based (QTL-seq, GradedPool-Seq, QTG-Seq, Exome QTL-seq, and RapMap), target sequence enrichment-based (RenSeq, AgRenSeq, and TACCA), and mutation-based groups (MutMap, NIKS algorithm, MutRenSeq, MutChromSeq), alongside improvements in classical mapping and genome-wide association analyses. Newer methods for outcrossing, heterozygous, and polyploid plant genetics have also been discussed. The use of k-mers has enriched the nature of genetic variants which can be utilized to identify the phenotype-causing genes, independent of reference genomes. We envisage that the recent methods discussed herein will expand the repertoire of useful alleles and help in developing high-yielding and climate-resilient crops.
Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Genoma de Planta/genética , Biología Molecular , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Environmental stresses negatively affect plant development and significantly influence global agricultural productivity. The growth suppression due to soil salinity involves osmotic stress, which is accompanied by ion toxicity, nutritional imbalance, and oxidative stress. The amelioration of salinity stress is one of the fundamental goals to be achieved to ensure food security and better meet the issues related to global hunger. The application of exogenous chemicals is the imperative and efficient choice to alleviate stress in the agricultural field. Among them, hydrogen sulfide (H2 S, a gasotransmitter) is known for its efficient role in stress mitigation, including salinity stress, along with other biological features related to growth and development in plants. H2 S plays a role in improving photosynthesis and ROS homeostasis, and interacts with other signaling components in a cascade fashion. The current review gives a comprehensive view of the participation of H2 S in salinity stress alleviation in plants. Further, its crosstalk with other stress ameliorating signaling component or supplement (e.g., NO, H2 O2 , melatonin) is also covered and discussed. Finally, we discuss the possible prospects to meet with success in agricultural fields.
Asunto(s)
Sulfuro de Hidrógeno , Plantas , Salinidad , Estrés Salino , Estrés FisiológicoRESUMEN
This work embodies the development of a real time loop mediated isothermal amplification (RealAmp) assay for the rapid detection of the cryptic tea phytopathogen, Exobasidium vexans, the causal organism of blister blight disease. Due to the widespread popularity of tea as a beverage and the associated agro-economy, the rapid detection and management of the fast-spreading blister blight disease have been a longstanding necessity. Loop-mediated isothermal amplification (LAMP) primers were designed targeting the E. vexans ITS rDNA region and the reaction temperature was optimized at 62 °C with a 60 min reaction time. Amplification of the E. vexans isolates in the initial LAMP reactions was confirmed by both agarose gel electrophoresis and SYBR Green I dye based colour change visualization. The specificity of the LAMP primers for E. vexans was validated by negative testing of seven different phytopathogenic test fungi using LAMP and RealAmp assay. The positive findings in RealAmp assay for E. vexans strain were corroborated via detecting fluorescence signals in real-time. Further, the LAMP assays performed with gDNA isolated from infected tea leaves revealed positive amplification for the presence of E. vexans. The results demonstrate that this rapid and precise RealAmp assay has the potential to be applied for field-based detection of E. vexans in real-time.
Asunto(s)
Basidiomycota , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Basidiomycota/genética , Cartilla de ADN/genética , Enfermedades de las Plantas/microbiología , Té , Sensibilidad y EspecificidadRESUMEN
Ascorbate peroxidases (APXs) are heme-dependent H2O2 scavenging enzymes involved in myriad biological processes. Herein, a total of 21 TaAPX and six TaAPX-R genes were identified from the A, B and D sub-genomes of Triticum aestivum L. The occurrence of three paralogous gene pairs with unequal evolutionary rate suggested functional divergence. The phylogenetic analysis formed four distinct clades having conserved gene and protein architecture, and sub-cellular localization. The tertiary structure analysis revealed the presence of helices and coils and residues involved in ligand binding. Transcriptional profiling of each TaAPX and TaAPX-R gene suggested their specific role during development and stress response. Modulated transcript expression and APX enzyme activity during various stress conditions indicated their role in stress response. Interaction analyses suggested their association with other genes, miRNAs and various legends. The present study reported numerous features of these genes, and may provide a platform for their detailed functional characterization in future studies.
Asunto(s)
Ascorbato Peroxidasas/genética , Proteínas de Plantas/genética , Triticum/enzimología , Triticum/genética , Ascorbato Peroxidasas/química , Ascorbato Peroxidasas/clasificación , Ascorbato Peroxidasas/metabolismo , Mapeo Cromosómico , Exones , Duplicación de Gen , Intrones , MicroARNs/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Empalme del ARN , RNA-Seq , Sintenía , Triticum/crecimiento & desarrolloRESUMEN
Herbicides have proven to be a boon for agricultural fields. Their inherent property to kill weeds and unwanted vegetation makes them an essential biological tool for farmers and agricultural systems. Besides being capable of destroying weeds, they also exhibit certain effects on non-target crop plants. In the present study, a laboratory experiment was performed to assess the effect of glyphosate on Vigna mungo root meristem cells. Seeds of five different genotypes of V. mungo were treated with a series of concentrations of glyphosate ranging from 1 to 10 mM, and their effects on mitotic cell division were studied. Healthy and uniform-sized seeds were selected and were allowed to grow in Petri plates for 3 days, and all the doses were maintained in triplicates. Roots were fixed at day 3 after treatment (DAT) for cytological microscopic slide preparation. The results obtained indicate the dose-dependent reduction in the mitotic index in all the genotypes and an increase in the percentage of chromosomal aberrations (CAs) and relative abnormality rate (RAR). Most commonly observed chromosome aberrations at lower doses (< 6 mM) were fragments, stickiness, and disoriented metaphase, while at higher doses (6 to 10 mM) bridges, laggards, spindle disorientation, and clumping were obvious. The increase in the percentage of CAs and RAR indicates the inhibitory effect of glyphosate on cell cycle progression at various stages in root tip cells. The present study is a fine example of a biomarker-based genotoxic assessment of mitotic damage caused by glyphosate.
Asunto(s)
Herbicidas , Vigna , Biomarcadores , Monitoreo del Ambiente , Genotipo , Glicina/análogos & derivados , Herbicidas/toxicidad , Vigna/genética , GlifosatoRESUMEN
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69â kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.