Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(51): 25948-25957, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776257

RESUMEN

The function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia.


Asunto(s)
Células Ciliadas Auditivas Externas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Estereocilios/metabolismo , Membrana Tectoria/metabolismo , Animales , Cóclea/citología , Sordera/congénito , Sordera/genética , Sordera/metabolismo , Predisposición Genética a la Enfermedad , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Vestibulares/metabolismo , Pérdida Auditiva Sensorineural/congénito , Pérdida Auditiva Sensorineural/genética , Ratones , Ratones Noqueados , Membrana Tectoria/citología
2.
Proc Natl Acad Sci U S A ; 111(25): 9307-12, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24920589

RESUMEN

A detrimental perceptive consequence of damaged auditory sensory hair cells consists in a pronounced masking effect exerted by low-frequency sounds, thought to occur when auditory threshold elevation substantially exceeds 40 dB. Here, we identified the submembrane scaffold protein Nherf1 as a hair-bundle component of the differentiating outer hair cells (OHCs). Nherf1(-/-) mice displayed OHC hair-bundle shape anomalies in the mid and basal cochlea, normally tuned to mid- and high-frequency tones, and mild (22-35 dB) hearing-threshold elevations restricted to midhigh sound frequencies. This mild decrease in hearing sensitivity was, however, discordant with almost nonresponding OHCs at the cochlear base as assessed by distortion-product otoacoustic emissions and cochlear microphonic potentials. Moreover, unlike wild-type mice, responses of Nherf1(-/-) mice to high-frequency (20-40 kHz) test tones were not masked by tones of neighboring frequencies. Instead, efficient maskers were characterized by their frequencies up to two octaves below the probe-tone frequency, unusually low intensities up to 25 dB below probe-tone level, and growth-of-masker slope (2.2 dB/dB) reflecting their compressive amplification. Together, these properties do not fit the current acknowledged features of a hypersensitivity of the basal cochlea to lower frequencies, but rather suggest a previously unidentified mechanism. Low-frequency maskers, we propose, may interact within the unaffected cochlear apical region with midhigh frequency sounds propagated there via a mode possibly using the persistent contact of misshaped OHC hair bundles with the tectorial membrane. Our findings thus reveal a source of misleading interpretations of hearing thresholds and of hypervulnerability to low-frequency sound interference.


Asunto(s)
Percepción Auditiva/fisiología , Células Ciliadas Auditivas Externas/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sonido , Animales , Células Ciliadas Auditivas Externas/citología , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética
3.
Nature ; 456(7219): 255-8, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18849963

RESUMEN

Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Estimulación Acústica , Animales , Femenino , Regulación de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/ultraestructura , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados
4.
Brain Sci ; 13(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38002499

RESUMEN

Mice are increasingly used as models of human-acquired neurological or neurodevelopmental conditions, such as autism, schizophrenia, and Alzheimer's disease. All these conditions involve central auditory processing disorders, which have been little investigated despite their potential for providing interesting insights into the mechanisms behind such disorders. Alterations of the auditory steady-state response to 40 Hz click trains are associated with an imbalance between neuronal excitation and inhibition, a mechanism thought to be common to many neurological disorders. Here, we demonstrate the value of presenting click trains at various rates to mice with chronically implanted pins above the inferior colliculus and the auditory cortex for obtaining easy, reliable, and long-lasting access to subcortical and cortical complex auditory processing in awake mice. Using this protocol on a mutant mouse model of autism with a defect of the Shank3 gene, we show that the neural response is impaired at high click rates (above 60 Hz) and that this impairment is visible subcortically-two results that cannot be obtained with classical protocols for cortical EEG recordings in response to stimulation at 40 Hz. These results demonstrate the value and necessity of a more complete investigation of central auditory processing disorders in mouse models of neurological or neurodevelopmental disorders.

5.
Front Mol Neurosci ; 16: 1139118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008785

RESUMEN

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

6.
Curr Biol ; 16(2): 208-13, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16431374

RESUMEN

Otoconia are biominerals of the vestibular system that are indispensable for the perception of gravity. Despite their importance, the process of otoconia genesis is largely unknown. Reactive oxygen species (ROS) have been recognized for their toxic effects in antimicrobial host defense as well as in aging and carcinogenesis. Enzymes evolved for ROS production belong to the recently discovered NADPH oxidase (Nox) enzyme family . Here we show that the inactivation of a regulatory subunit, NADPH oxidase organizer 1 (Noxo1), resulted in the severe balance deficit seen in the spontaneous mutant "head slant" (hslt) mice whose phenotype was rescued by Noxo1 transgenes. Wild-type Noxo1 was expressed in the vestibular and cochlear epithelia and was required for ROS production by an oxidase complex. In contrast, the hslt mutation of Noxo1 was biochemically inactive and led to an arrest of otoconia genesis, characterized by a complete lack of calcium carbonate mineralization and an accumulation of otoconial protein, otoconin-90/95 (OC-90/95). These results suggest that ROS generated by a Noxo1-dependent vestibular oxidase are critical for otoconia formation and may be required for interactions among otoconial components. Noxo1 mutants implicate a constructive developmental role for ROS, in contrast to their previously described toxic effects.


Asunto(s)
Membrana Otolítica/embriología , Equilibrio Postural/fisiología , Proteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Animales , Proteínas de Unión al Calcio , Línea Celular , Oído Interno/metabolismo , Proteínas de la Matriz Extracelular , Mutación del Sistema de Lectura , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Humanos , Ratones , Membrana Otolítica/química , Membrana Otolítica/metabolismo , Proteínas/genética , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transgenes
7.
Sci Adv ; 5(2): eaat9934, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30801007

RESUMEN

Outer hair cell (OHC) stereocilia bundle deflection opens mechanoelectrical transduction channels at the tips of the stereocilia from the middle and short rows, while bundle cohesion is maintained owing to the presence of horizontal top connectors. Here, we used a quantitative noncontact atomic force microscopy method to investigate stereocilia bundle stiffness and damping, when stimulated at acoustic frequencies and nanometer distances from the bundle. Stereocilia bundle mechanics were determined in stereocilin-deficient mice lacking top connectors and with detached tectorial membrane (Strc -/-/Tecta -/- double knockout) and heterozygous littermate controls (Strc +/-/Tecta -/-). A substantial decrease in bundle stiffness and damping by ~60 and ~74% on postnatal days P13 to P15 was observed when top connectors were absent. Additionally, we followed bundle mechanics during OHC top connectors development between P9 and P15 and quantified the observed increase in OHC bundle stiffness and damping in Strc +/-/Tecta -/- mice while no significant change was detected in Strc -/-/Tecta -/- animals.


Asunto(s)
Células Ciliadas Auditivas Externas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estereocilios/metabolismo , Membrana Tectoria/metabolismo , Animales , Células Ciliadas Auditivas Externas/ultraestructura , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Estereocilios/genética , Estereocilios/ultraestructura , Membrana Tectoria/ultraestructura
8.
Hear Res ; 203(1-2): 144-53, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15855039

RESUMEN

A subtracted library prepared from vestibular sensory areas [Nat. Genet. 26 (2000) 51] was used to identify a 960bp murine transcript preferentially expressed in the inner ear and testis. The cDNA predicts a basic 124aa protein that does not share any significant sequence homology with known proteins. Immunofluorescence and immunoelectron microscopy revealed that the protein is located mainly in the kinocilium of sensory cells in the inner ear. The protein was thus named kinocilin. In the mouse, kinocilin is first detected in the kinocilia of vestibular and auditory hair cells at embryonic days 14.5, and 18.5, respectively. In the mature vestibular hair cells, kinocilin is still present in the kinocilium. As the auditory hair cells begin to lose the kinocilium during postnatal development, kinocilin becomes distributed in an annular pattern at the apex of these cells, where it co-localizes with the tubulin belt [Hear. Res. 42 (1989) 1]. In mature auditory hair cells, kinocilin is also present at the level of the cuticular plate, at the base of each stereocilium. In addition, as the kinocilium regresses from developing auditory hair cells, kinocilin begins to be expressed by the pillar cells and Deiters cells, that both contain prominent transcellular and apical bundles of microtubules. By contrast, kinocilin was not detected in the supporting cells in the vestibular end organs. The protein is also present in the manchette of the spermatids, a transient structure enriched in interconnected microtubules. We propose that kinocilin has a role in stabilizing dense microtubular networks or in vesicular trafficking.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Cilios/metabolismo , Cóclea/citología , Cóclea/metabolismo , ADN Complementario/metabolismo , Oído Interno/metabolismo , Embrión de Mamíferos/metabolismo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/embriología , Células Ciliadas Auditivas/fisiología , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Testículo/metabolismo , Distribución Tisular
9.
Mamm Genome ; 11(11): 961-966, 2000 11.
Artículo en Inglés | MEDLINE | ID: mdl-11178734

RESUMEN

Deafness is a common sensory defect in human. Our understanding of the molecular bases of this pathology comes from the study of a few genes that have been identified in human and/or in mice. Indeed, deaf mouse mutants are good models for studying and identifying genes involved in human hereditary hearing loss. Among these mouse mutants, twister was initially reported to have abnormal behavior and thereafter to be deaf. The recessive twister (twt) mutation has been mapped on mouse Chromosome (Chr) 7, homologous to the long arm of human Chr 15 (15q11). Otog, the gene encoding otogelin, a glycoprotein specific to all the acellular membranes of the inner ear, is also localized to mouse Chr 7, but in a region more proximal to the twister mutation, homologous to the short arm of human Chr 11 (11p15) carrying the two deafness loci, DFNB18 and USH1C. Mutant mice resulting from the knock-out of Otog, the Otog(tm1Prs) mice, present deafness and severe imbalance. Although twt had been mapped distally to Otog, these data prompted us to test whether twt could be due to a mutation in the Otog locus. Here, we demonstrate by genetic analysis that twt is actually allelic to Otog(tm1Prs). We further extend the phenotypical analysis of twister mice, documenting the association of a severe vestibular phenotype and moderate to severe form of deafness. Molecular analysis of the Otog gene revealed the absence of detectable expression of Otog in the twister mutant. The molecular and phenotypical description of the twt mouse mutation, Otog(twt), reported herein, highlights the importance of the acellular membranes in the inner ear mechanotransduction process.

10.
J Comp Neurol ; 519(2): 194-210, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21165971

RESUMEN

Stereocilin is defective in a recessive form of deafness, DFNB16. We studied the distribution of stereocilin in the developing and mature mouse inner ear and analyzed the consequences of its absence in stereocilin-null (Strc(-/-)) mice that suffer hearing loss starting at postnatal day 15 (P15) and progressing until P60. Using immunofluorescence and immunogold electron microscopy, stereocilin was detected in association with two cell surface specializations specific to outer hair cells (OHCs) in the mature cochlea: the horizontal top connectors that join the apical regions of adjacent stereocilia within the hair bundle, and the attachment links that attach the tallest stereocilia to the overlying tectorial membrane. Stereocilin was also detected around the kinocilium of vestibular hair cells and immature OHCs. In Strc(-/-) mice the OHC hair bundle was structurally and functionally normal until P9. Top connectors, however, did not form and the cohesiveness of the OHC hair bundle progressively deteriorated from P10. The stereocilia were still interconnected by tip links at P14, but these progressively disappeared from P15. By P60 the stereocilia, still arranged in a V-shaped bundle, were fully disconnected from each other. Stereocilia imprints on the lower surface of the tectorial membrane were also not observed in Strc(-/-) mice, thus indicating that the tips of the tallest stereocilia failed to be embedded in this gel. We conclude that stereocilin is essential to the formation of horizontal top connectors. We propose that these links, which maintain the cohesiveness of the mature OHC hair bundle, are required for tip-link turnover.


Asunto(s)
Células Ciliadas Auditivas/ultraestructura , Proteínas/metabolismo , Membrana Tectoria/ultraestructura , Animales , Cilios/metabolismo , Cilios/ultraestructura , Electrofisiología , Cobayas , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular , Mecanotransducción Celular/fisiología , Ratones , Ratones Noqueados , Proteínas/genética
11.
Hum Genet ; 111(1): 26-30, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12136232

RESUMEN

We have recently shown that USH1C underlies Usher syndrome type 1c (USH1C), an USH1 subtype characterized by profound deafness, retinitis pigmentosa, and vestibular dysfunction. USH1C encodes a PDZ-domain-containing protein, harmonin. Eight different Ush1c transcripts were identified in the mouse inner ear. Moreover, transcripts containing seven alternatively spliced exons (A-F, G/G) were found to be expressed in the inner ear, but not in the eye. These findings suggested that mutations involving USH1C might also be the cause of DFNB18, a form of non-syndromic deafness, which maps to a chromosomal region that includes USH1C. We screened 32 Chinese multiplex families with non-syndromic recessive deafness for USH1C mutations. In one family, congenital profound deafness without RP was associated with a C to G transversion in the alternatively spliced exon D, predicting an arginine to proline substitution at codon 608 in the proline-, serine- and threonine-rich region of harmonin. We also screened 320 deaf probands from other ethnic background and found three who were heterozygous for changes in the alternately spliced exons including Gly431Val in exon B, Arg620Leu and Arg636Cys in exon D. None of these mutations were detected in DNA from 200 control subjects with normal hearing including 110 Chinese. We also screened 121 non-Acadian probands with type 1 Usher syndrome. None carried any mutations in these exons of USH1C. Our findings show that USH1C mutations can also cause non-syndromic deafness and that some harmonin isoforms are specifically required for inner ear function.


Asunto(s)
Empalme Alternativo/genética , Proteínas Portadoras/genética , Sordera/genética , Exones/genética , Mutación/genética , Proteínas Adaptadoras Transductoras de Señales , Adolescente , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Análisis Mutacional de ADN , Cartilla de ADN/química , Femenino , Genes Recesivos , Humanos , Masculino , Linaje , Polimorfismo Conformacional Retorcido-Simple , Isoformas de Proteínas , Síndrome
12.
Proc Natl Acad Sci U S A ; 99(9): 6240-5, 2002 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-11972037

RESUMEN

A 3,673-bp murine cDNA predicted to encode a glycosylphosphatidylinositol-anchored protein of 1,088 amino acids was isolated during a study aimed at identifying transcripts specifically expressed in the inner ear. This inner ear-specific protein, otoancorin, shares weak homology with megakaryocyte potentiating factor/mesothelin precursor. Otoancorin is located at the interface between the apical surface of the inner ear sensory epithelia and their overlying acellular gels. In the cochlea, otoancorin is detected at two attachment zones of the tectorial membrane, a permanent one along the top of the spiral limbus and a transient one on the surface of the developing greater epithelial ridge. In the vestibule, otoancorin is present on the apical surface of nonsensory cells, where they contact the otoconial membranes and cupulae. The identification of the mutation (IVS12+2T>C) in the corresponding gene OTOA in one consanguineous Palestinian family affected by nonsyndromic recessive deafness DFNB22 assigns an essential function to otoancorin. We propose that otoancorin ensures the attachment of the inner ear acellular gels to the apical surface of the underlying nonsensory cells.


Asunto(s)
Oído Interno/metabolismo , Epitelio/metabolismo , Trastornos de la Audición/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/fisiología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Análisis Mutacional de ADN , ADN Complementario/metabolismo , Exones , Femenino , Proteínas Ligadas a GPI , Ligamiento Genético , Genotipo , Humanos , Masculino , Mesotelina , Ratones , Microscopía Electrónica , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Linaje , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA