RESUMEN
Impaired wound healing in people with diabetes has multifactorial causes, with insufficient neovascularization being one of the most important. Hypoxia-inducible factor-1 (HIF-1) plays a central role in the hypoxia-induced response by activating angiogenesis factors. As its activity is under precise regulatory control of prolyl-hydroxylase domain 2 (PHD-2), downregulation of PHD-2 by small interfering RNA (siRNA) could stabilize HIF-1α and, therefore, upregulate the expression of pro-angiogenic factors as well. Intracellular delivery of siRNA can be achieved with nanocarriers that must fulfill several requirements, including high stability, low toxicity, and high transfection efficiency. Here, we designed and compared the performance of layer-by-layer self-assembled siRNA-loaded gold nanoparticles with two different outer layers-Chitosan (AuNP@CS) and Poly L-arginine (AuNP@PLA). Although both formulations have exactly the same core, we find that a PLA outer layer improves the endosomal escape of siRNA, and therefore, transfection efficiency, after endocytic uptake in NIH-3T3 cells. Furthermore, we found that endosomal escape of AuNP@PLA could be improved further when cells were additionally treated with desloratadine, thus outperforming commercial reagents such as Lipofectamine® and jetPRIME®. AuNP@PLA in combination with desloratadine was proven to induce PHD-2 silencing in fibroblasts, allowing upregulation of pro-angiogenic pathways. This finding in an in vitro context constitutes a first step towards improving diabetic wound healing with siRNA therapy.
Asunto(s)
Inductores de la Angiogénesis/metabolismo , Angiopatías Diabéticas/metabolismo , Oro , Hipoxia/metabolismo , Lisosomas , Nanopartículas , ARN Interferente Pequeño/genética , Animales , Supervivencia Celular , Fenómenos Químicos , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/patología , Composición de Medicamentos , Endosomas/metabolismo , Técnicas de Transferencia de Gen , Hipoxia/genética , Loratadina/análogos & derivados , Loratadina/química , Loratadina/farmacología , Ratones , Células 3T3 NIH , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificaciónRESUMEN
L-ascorbic acid 2-phosphate magnesium (APMg) salt is a vitamin C derivative frequently used as a raw material in cell and tissue therapy. APMg is not only used as a replacement of the unstable ascorbate, but also shows additional cell-biological functionalities. However, its unknown structural characteristics hamper the mechanistic elucidation of its biological role. Therefore, different techniques were applied for APMg structure characterization. Firstly, the stoichiometric composition was characterized by its solvent, ligand and magnesium content. No crystals of APMg could be obtained; however, a single crystal of APNa, the sodium salt of l-ascorbic acid 2-phosphate, was successfully obtained and its crystal structure was elucidated. FT-IR was applied to further clarify the structure of solid APMg. Finally, the structure of APMg in aqueous solution was explored by potentiometric titration as well as FT-IR.
Asunto(s)
Ácido Ascórbico/análogos & derivados , Magnesio/química , Ácido Ascórbico/química , Cationes/química , Cristalización , Ligandos , Estructura Molecular , Solventes/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
PURPOSE: Paclitaxel (PTX)-loaded genipin-crosslinked gelatin microspheres (GP-MS) are a prolonged IP delivery system under development for the treatment of peritoneal minimal residual disease (pMRD). Here, we show the use of a pharmacokinetic-pharmacodynamic (PKPD) modelling approach to inform the formulation development of PTX-GP-MS in a mice pMRD model. METHODS: PTX blood concentrations and survival data were obtained in Balb/c Nu mice receiving different single IP doses (7.5 and/or 35 mg/kg) of PTX-ethanolic loaded GP-MS (PTXEtOH-GP-MS), PTX-nanosuspension loaded GP-MS (PTXnano-GP-MS), and immediate release formulation Abraxane®. A population PK model was developed to characterize the PTX blood concentration pattern and to predict PTX concentrations in peritoneum. Afterwards, PKPD relationships between the predicted peritoneal or blood concentrations and survival were explored using time-to-event modelling. RESULTS: A PKPD model was developed that simultaneously describes the competing effects of treatment efficacy (driven by peritoneal concentration) and toxicity (driven by blood concentration) of PTX on survival. Clear survival advantages of PTXnano-GP-MS over PTXEtOH-GP-MS and Abraxane® were found. Simulations of different doses of PTXnano-GP-MS demonstrated that drug-induced toxicity is high at doses between 20 and 35 mg/kg. CONCLUSIONS: The model predicts that the dose range of 7.5-15 mg/kg of PTXnano-GP-MS provides an optimal balance between efficacy and safety.
Asunto(s)
Paclitaxel Unido a Albúmina/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias Peritoneales/tratamiento farmacológico , Paclitaxel Unido a Albúmina/química , Paclitaxel Unido a Albúmina/farmacocinética , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Línea Celular Tumoral , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos , Gelatina/química , Humanos , Iridoides/química , Ratones Endogámicos BALB C , Ratones Desnudos , Microesferas , Modelos Biológicos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Freeze-drying is a well-established technique to improve the stability of biopharmaceuticals which are unstable in aqueous solution. To obtain an elegant dried product appearance, the temperature at the moving sublimation interface Ti should be kept below the critical product temperature Ti,crit during primary drying. The static temperature sensors applied in batch freeze-drying provide unreliable Ti data due to their invasive character. In addition, these sensors are incompatible with the continuous freeze-drying concept based on spinning of the vials during freezing, leading to a thin product layer spread over the entire inner vial wall. During continuous freeze-drying, the sublimation front moves from the inner side of the vial toward the glass wall, offering the unique opportunity to monitor Ti via noncontact inline thermal imaging. Via Fourier's law of thermal conduction, the temperature gradient over the vial wall and ice layer was quantified, which allowed the exact measurement of Ti during the entire primary drying step. On the basis of the obtained thermal images, the infrared (IR) energy transfer was computed via the Stefan-Boltzmann law and the dried product mass transfer resistance ( Rp) profile was obtained. This procedure allows the determination of the optimal dynamic IR heater temperature profile for the continuous freeze-drying of any product. In addition, the end point of primary drying was detected via thermal imaging and confirmed by inline near-infrared (NIR) spectroscopy. Both applications show that thermal imaging is a suitable and promising process analytical tool for noninvasive temperature measurements during continuous freeze-drying, with the potential for inline process monitoring and control.
Asunto(s)
Liofilización , Desecación , Tecnología Farmacéutica , TemperaturaRESUMEN
Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.
RESUMEN
Balanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control, n 10), vegetarian diet without supplementation (Veg+Pla, n 15) and vegetarian diet combined with daily ß-alanine (0·8-0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl, n 15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 and P=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect. 1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.
Asunto(s)
Carnitina/metabolismo , Carnosina/metabolismo , Creatina/metabolismo , Dieta Vegetariana , Homeostasis/fisiología , Adolescente , Adulto , Femenino , Humanos , Adulto JovenRESUMEN
PURPOSE: The aim of this study was to investigate (i) the influence of drug solid-state (crystalline or dissolved in the polymer matrix) on the melt viscosity and (ii) the influence of the drug concentration, temperature and shear rate on polymer crystallization using rheological tests. METHODS: Poly (ethylene oxide) (PEO) (100.000 g/mol) and physical mixtures (PM) containing 10-20-30-40% (w/w) ketoprofen or 10% (w/w) theophylline in PEO were rheologically characterized. Rheological tests were performed (frequency and temperature sweeps in oscillatory shear as well as shear-induced crystallization experiments) to obtain a thorough understanding of the flow behaviour and crystallization of PEO-drug dispersions. RESULTS: Theophylline did not dissolve in PEO as the complex viscosity (η*) of the drug-polymer mixture increased as compared to that of neat PEO. In contrast, ketoprofen dissolved in PEO and acted as a plasticizer, decreasing η*. Acting as a nucleating agent, theophylline induced the crystallization of PEO upon cooling from the melt. On the other hand, ketoprofen inhibited crystallization upon cooling. Moreover, higher concentrations of ketoprofen in the drug-polymer mixture increasingly inhibited polymer crystallization. However, shear-induced crystallization was observed for all tested mixtures containing ketoprofen. CONCLUSION: The obtained rheological results are relevant for understanding and predicting HME processability (e.g., barrel temperature selection) and downstream processing such as injection moulding (e.g., mold temperature selection).
Asunto(s)
Excipientes/química , Polietilenglicoles/química , Química Farmacéutica , Cristalización , Congelación , Humanos , Cetoprofeno/química , Reología , Solubilidad , Temperatura , Teofilina/química , ViscosidadRESUMEN
PURPOSE: Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). METHODS: An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). RESULTS: A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. CONCLUSION: The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.
Asunto(s)
Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Tamaño de la Partícula , Reología/métodos , Rastreo Diferencial de Calorimetría/métodos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/síntesis química , TemperaturaRESUMEN
CONTEXT: The negative impact of magnesium stearate (MgSt) on the hardness of tablets is a well-known phenomenon, but the influence of paddle movement in the forced feeder on the lubricant effect during tablet compression is often neglected. OBJECTIVE: The purpose of this research was to investigate the influence of paddle speed in the forced feeder on tablet tensile strength (TS). MATERIALS AND METHODS: Mixtures of microcrystalline cellulose (MCC) and MgSt (0.5%) were blended using different methods (low & high shear). After blending, the formulations were compressed into tablets. All parameters of the tableting cycle were kept constant except the speed of the paddles in the forced feeder. RESULTS AND DISCUSSION: The blending technique affected the sensitivity of the formulation to the paddle speed. The TS of pure MCC tablets did not change in function of paddle speed, while tablets prepared by low shear mixing became softer at higher paddle speed. The TS of tablets manufactured using the high-shear mixed blend was low and did not vary in function of paddle speed, suggesting that overlubrication already occurred during the initial blending step. Furthermore, analysis of the machine parameters allowed evaluation of the influence of the paddles on the flowability, initial packing, and compactability of the powder mixtures. CONCLUSION: The results elucidated that during manufacturing of tablets using MgSt-containing blends care should not only be taken during the blending step prior to tableting, but also during the tableting process itself, as paddle speed can affect tablet TS, a critical quality attribute.
RESUMEN
Using Eudragit® E PO (EudrE) as a polymethacrylate carrier, the aim of the study was to develop a pH-independent dosage form containing ibuprofen (IBP) as an active compound via chemical modification of the polymer (i.e. quaternization of amine function) or via the addition of dicarboxylic acids (succinic, glutaric and adipic acid) to create a pH micro-environment during dissolution. Biconvex tablets (diameter: 10 mm; height: 5 mm) were produced via hot melt extrusion and injection molding. In vitro dissolution experiments revealed that a minimum of 25% of quaternization was sufficient to partially (up to pH 5) eliminate the pH-dependent effect of the EudrE/IBP formulation. The addition of dicarboxylic acids did not alter IBP release in a pH 1 and 3 medium as the dimethyl amino groups of EudrE are already fully protonated, while in a pH 5 solvent IBP release was significantly improved (cf. from 0% to 92% release after 1 h dissolution experiments upon the addition of 20 wt.% succinic acid). Hence, both approaches resulted in a pH-independent (up to pH 5) immediate release formulation. However, the presence of a positively charged polymer induced stability issues (recrystallization of API) and the formulations containing dicarboxylic acids were classified as mechanically unstable. Hence, further research is needed to obtain a pH-independent immediate release formulation while using EudrE as a polmethacrylate carrier.
Asunto(s)
Liberación de Fármacos , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/metabolismo , Química Farmacéutica , Concentración de Iones de HidrógenoRESUMEN
CONTEXT: Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. OBJECTIVE: The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. MATERIALS AND METHODS: Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. RESULTS AND DISCUSSION: Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. CONCLUSION: The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space.
Asunto(s)
Fosfatos de Calcio/química , Celulosa/química , Composición de Medicamentos/métodos , Excipientes/química , Modelos Químicos , Composición de Medicamentos/instrumentación , Método de Montecarlo , Polvos , Control de Calidad , Comprimidos , Factores de TiempoRESUMEN
PURPOSE: A strong pharmacokinetic rational exists for the use of (Hyperthermic) Intraperitoneal Perioperative Chemotherapy in peritoneal carcinomatosis. However, controversy remains regarding the optimal treatment strategies. Paclitaxel is believed to be a good compound for IPEC treatment because of its favourable pharmacokinetic properties. METHODS: Rat experiments were set up to gain insight in PTX's pharmacokinetics and pharmacodynamics after IPEC treatment with Taxol®. Afterwards a Pharmacokinetic-Pharmacodynamic model was developed, that concurrently describes plasma and tumour exposure post IPEC dosing. Moreover, the developed model adequately describes the time-course of tumour apoptosis as well as the treatment effect on tumour volume. RESULTS: We show that the complex absorption processes underlying PTX absorption from the peritoneal cavity post IPEC dosing, give rise to a markedly non-linear dose response relationship. Furthermore, we show that, in order to optimize treatment efficiency whilst concurrently minimizing the possibility of systemic toxicities, lowering the dose and extending exposure to the cytotoxic solution is the way forward. CONCLUSIONS: Based on the close resemblance between tumour exposure in our animal model and tumour exposure in patients treated under similar conditions, we hypothesise that, according to our findings in the rat, in the treatment of PC using IPEC administration of PTX, less is truly more.
Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Quimioterapia del Cáncer por Perfusión Regional/métodos , Modelos Biológicos , Paclitaxel/administración & dosificación , Paclitaxel/farmacocinética , Neoplasias Peritoneales/tratamiento farmacológico , Absorción Fisiológica , Animales , Antineoplásicos/sangre , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Simulación por Computador , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Hipertermia Inducida , Dinámicas no Lineales , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Paclitaxel/sangre , Paclitaxel/uso terapéutico , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/prevención & control , Neoplasias Peritoneales/secundario , Ratas Desnudas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid.
RESUMEN
Binder selection is a crucial step in continuous twin-screw wet granulation (TSWG), as the material experiences a much shorter residence time (2-40 s) in the granulator barrel compared to batch-wise granulation processes. Polyvinyl alcohol (PVA) 4-88 was identified as an effective binder during TSWG, but the potential of other PVA grades-differing in polymerization and hydrolysis degree-has not yet been studied. Therefore, the aim of the current study was to evaluate the potential of different PVA grades as a binder during TSWG. The breakage and drying behavior during the fluidized bed drying of drug-loaded granules containing the PVA grades was also studied. Three PVA grades (4-88, 18-88, and 40-88) were characterized and their attributes were compared to previously investigated binders by Vandevivere et al. through principal component analysis. Three binder clusters could be distinguished according to their attributes, whereby each cluster contained a PVA grade and a previously investigated binder. PVA 4-88 was the most effective binder of the PVA grades for both a good water-soluble and water-insoluble formulation. This could be attributed to its high total surface energy, low viscosity, good wettability of hydrophilic and hydrophobic surfaces, and good wettability by water of the binder. Compared to the previously investigated binders, all PVA grades were more effective in the water-insoluble formulation, as they yielded strong granules (friability below 30%) at lower L/S-ratios. This was linked to the high dispersive surface energy of the high-energy sites on the surface of PVA grades and their low surface tension. During fluidized bed drying, PVA grades proved suitable binders, as the acetaminophen (APAP) granules were dried within a short time due to the low L/S-ratio, at which high-quality granules could be produced. In addition, no attrition occurred, and strong tablets were obtained. Based on this study, PVA could be the preferred binder during twin screw granulation due to its high binder effectiveness at a low L/S-ratio, allowing efficient downstream processing. However, process robustness must be controlled by the included excipients, as PVA grades are operating in a narrow L/S-ratio range.
RESUMEN
This study explores the realm of personalized medicine by investigating the utilization of 3D-printed dosage forms, specifically focusing on patient-specific enteric capsules designed for the modified release of ketoprofen, serving as a model drug. The research investigates two distinct scenarios: the modification of drug release from 3D-printed capsules crafted from hydroxypropyl methylcellulose phthalate:polyethylene glycol (HPMCP:PEG) and poly(vinyl alcohol) (PVA), tailored for pH sensitivity and delayed release modes, respectively. Additionally, a novel ketoprofen-loaded self-nanoemulsifying drug delivery system (SNEDDS) based on pomegranate seed oil (PSO) was developed, characterized, and employed as a fill material for the capsules. Through the preparation and characterization of the HPMCP:PEG based filament via the hot-melt extrusion method, the study thoroughly investigated its thermal and mechanical properties. Notably, the in vitro drug release analysis unveiled the intricate interplay between ketoprofen release, polymer type, and capsule thickness. Furthermore, the incorporation of ketoprofen into the SNEDDS exhibited an enhancement in its in vitro cylooxygenase-2 (COX-2) inhibitory activity. These findings collectively underscore the potential of 3D printing in shaping tailored drug delivery systems, thereby contributing significantly to the advancement of personalized medicine.
Asunto(s)
Cápsulas , Liberación de Fármacos , Emulsiones , Cetoprofeno , Medicina de Precisión , Impresión Tridimensional , Cetoprofeno/química , Medicina de Precisión/métodos , Humanos , Emulsiones/química , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada , Metilcelulosa/química , Metilcelulosa/análogos & derivados , Alcohol Polivinílico/químicaRESUMEN
Background: Epithelial ovarian cancer is associated with high mortality due to diagnosis at later stages associated with peritoneal involvement. Several trials have evaluated the effect of intraperitoneal treatment. In this preclinical study, we report the efficacy, pharmacokinetics and pharmacodynamics of intraperitoneal treatment with two approved nanomolecular formulations of paclitaxel (nab-PTX and mic-PTX) in a murine ovarian cancer xenograft model. Methods: IC50 was determined in vitro on three ovarian cancer cell lines (OVCAR-3, SK-OV-3 and SK-OV-3-Luc IP1). EOC xenografts were achieved using a modified subperitoneal implantation technique. Drug treatment was initiated 2 weeks after engraftment, and tumor volume and survival were assessed. Pharmacokinetics and drug distribution effects were assessed using UHPLC-MS/MS and MALDI imaging mass spectrometry, respectively. Pharmacodynamic effects were analyzed using immunohistochemistry and transmission electron microscopy using standard protocols. Results: We demonstrated sub-micromolar IC50 concentrations for both formulations on three EOC cancer cell lines in vitro. Furthermore, IP administration of nab-PTX or mic-PTX lead to more than 2-fold longer survival compared to a control treatment of IP saline administration (30 days in controls, 66 days in nab-PTX treated animals, and 76 days in mic-PTX animals, respectively). We observed higher tissue uptake of drug following nab-PTX administration when compared to mic-PTX, with highest uptake after 4 hours post-treatment, and confirmed this lower uptake of mic-PTX using HPLC on digested tumor samples. Furthermore, apoptosis was not increased in tumor implants up to 24h post-treatment. Conclusion: Intraperitoneal administration of both nab-PTX and mic-PTX results in a significant anticancer efficacy and survival benefit in a mouse OC xenograft model.
Asunto(s)
Neoplasias Ováricas , Humanos , Animales , Femenino , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Xenoinjertos , Apoptosis , Espectrometría de Masas en Tándem , Línea Celular Tumoral , Modelos Animales de EnfermedadRESUMEN
The aim of this research was to improve understanding of material behavior in pharmaceutical hot-melt extrusion by implementing a Raman probe in each section of the barrel. Fourier-transform infrared spectroscopy measurements were performed to confirm the Raman observations. Metoprolol tartrate (MPT) concentration (10 and 40% in Eudragit RSPO), extrusion temperature (100, 120, and 140 °C), and screw speed (80 and 160 rpm) were varied to examine their influence on polymer-drug solid state throughout the barrel. When extruding a formulation with a 40% MPT concentration, the broadening of MPT peaks indicates melting of MPT between sections 2 and 3, caused by the first kneading zone. Decreasing the concentration to 10% shows an additional spectral difference (i.e., peak shifts indicating interactions between MPT and the carrier) between sections 5 and 6, due to formation of a solid solution. At a 10% MPT load, increasing the extrusion temperature does not influence the solid state or the barrel section where the final solid state is obtained. At a drug load of 40%, the solid state of the end product is reached further down the barrel when the temperature decreases. Doubling the screw speed when processing a 10% MPT formulation does not affect the solid state of the product or the location where it is obtained. In contrast, at a 40% drug load, the section where the final product is produced, is situated earlier in the barrel, when applying a higher speed. The Raman spectra provide real-time information about polymer-drug behavior throughout the barrel, facilitating process understanding and optimization.
RESUMEN
Here, we aim to evaluate Gelucire 44/14 as non-ionic surface-active excipient to produce immediate-release solid dosage forms for poorly water-soluble drugs. Gelucires are polyethylene glycol (PEG) glycerides composed of mono-, di- and triglycerides and mono- and diesters of PEG. They are inert semi-solid waxy amphiphilic excipients with surface-active properties that spontaneously form a fine dispersion or emulsion upon contact with water. Monolithic Gelucire 44/14 structures are prone to prolonged erosion times, thereby slowing down drug dissolution. To overcome this issue, we combine either granulation or spray-drying, followed by compression into tablets, with an optimized composition of disintegration promoting agents. This formulation strategy allows obtaining nearly 100% drug release within 10 min dissolution time.
Asunto(s)
Anticonvulsivantes/química , Carbamazepina/química , Portadores de Fármacos/química , Excipientes/química , Polietilenglicoles/química , SolubilidadRESUMEN
We have developed fast-disintegrating tablets comprising starch-based pellets and excipient granules for intravaginal drug delivery. The purpose of this study was to evaluate the intravaginal disintegration, distribution and retention behavior of these tablets in sheep and women using colposcopy as visualization technique. One tablet was administered to each study subject (n = 6) and repeated colposcopy examination was performed over a 48 h and 24 h period in sheep and women, respectively. Colposcopy in sheep indicated that in vivo tablet disintegration was initiated within 30 min of vaginal administration and that due to disintegration of the pellets themselves, the formulation was transformed into a gel-like mass which distributed throughout the entire vaginal cavity within 2-4 h. In vivo tablet disintegration after intravaginal administration to women was complete within 4 h, whereby the formulation gradually spread throughout the vaginal cavity as complete covering was observed after 12 and 24 h. The persistent retention (up to 24 and 48 h in women and sheep, respectively) confirmed the long retention time of this vaginal formulation.
Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes/química , Almidón/química , Vagina/metabolismo , Administración Intravaginal , Adulto , Animales , Colposcopía/métodos , Preparaciones de Acción Retardada , Composición de Medicamentos , Femenino , Humanos , Ovinos , Comprimidos , Factores de Tiempo , Distribución Tisular , Adulto JovenRESUMEN
There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.