Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677517

RESUMEN

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Asunto(s)
Mecanotransducción Celular , Interferencia de ARN , Receptores Acoplados a Proteínas G/fisiología , Animales , Materiales Biocompatibles , Calcio/metabolismo , Línea Celular Tumoral , Células Endoteliales/fisiología , Endotelio Vascular/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistencia al Corte , Estrés Mecánico , Resistencia Vascular
2.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239412

RESUMEN

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Asunto(s)
Receptor alfa de Estrógeno , Trofoblastos , Animales , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Fertilidad , Humanos , Ratones , Placenta/metabolismo , Embarazo , Progesterona/metabolismo , Receptores de Estrógenos/metabolismo , Trofoblastos/metabolismo
3.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37460898

RESUMEN

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Asunto(s)
Células Endoteliales , Infarto del Miocardio , Humanos , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Infarto del Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal , Vasodilatación , Animales , Ratones
4.
J Vasc Res ; 60(5-6): 273-282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980887

RESUMEN

INTRODUCTION: Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD. METHODS: We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan). RESULTS: Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 µmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT. CONCLUSION: APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Ratones , Animales , Lactante , Enfermedad de Alzheimer/tratamiento farmacológico , Bosentán , Receptores de Endotelina , Dilatación , Hipercapnia , Modelos Animales de Enfermedad , Circulación Cerebrovascular , Ratones Transgénicos , Endotelina-1
5.
Mar Drugs ; 21(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36976245

RESUMEN

Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na+ (NaV) channels. In arteries, NaV channels are expressed in sympathetic nerve endings, both in the intima and media. In this present work, we aimed to decipher the role of NaV channels in vascular tone using TTX. We first characterized the expression of NaV channels in the aorta, a model of conduction arteries, and in mesenteric arteries (MA), a model of resistance arteries, in C57Bl/6J mice, by Western blot, immunochemistry, and absolute RT-qPCR. Our data showed that these channels are expressed in both endothelium and media of aorta and MA, in which scn2a and scn1b were the most abundant transcripts, suggesting that murine vascular NaV channels consist of NaV1.2 channel subtype with NaVß1 auxiliary subunit. Using myography, we showed that TTX (1 µM) induced complete vasorelaxation in MA in the presence of veratridine and cocktails of antagonists (prazosin and atropine with or without suramin) that suppressed the effects of neurotransmitter release. In addition, TTX (1 µM) strongly potentiated the flow-mediated dilation response of isolated MA. Altogether, our data showed that TTX blocks NaV channels in resistance arteries and consecutively decreases vascular tone. This could explain the drop in total peripheral resistance observed during mammal tetrodotoxications.


Asunto(s)
Aorta , Arterias Mesentéricas , Ratones , Animales , Tetrodotoxina/farmacología , Mamíferos , Subunidad beta-1 de Canal de Sodio Activado por Voltaje
6.
FASEB J ; 35(7): e21678, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34133045

RESUMEN

Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Hipertensión/prevención & control , Dinámicas Mitocondriales , Sustancias Protectoras/administración & dosificación , Animales , Apoptosis , Inhibidores Enzimáticos/toxicidad , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
7.
Circ Res ; 127(12): 1473-1487, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33012251

RESUMEN

RATIONALE: Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17ß-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE: Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS: Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17ß-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17ß-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS: Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.


Asunto(s)
Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Receptor alfa de Estrógeno/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Transducción de Señal , Factores de Tiempo
8.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35270003

RESUMEN

Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1-/- (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1-/- and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.


Asunto(s)
Receptor alfa de Estrógeno , Arterias Mesentéricas , Envejecimiento/genética , Animales , Estradiol , Receptor alfa de Estrógeno/genética , Arterias Mesentéricas/fisiología , Ratones
9.
J Vasc Res ; 58(1): 16-26, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33264773

RESUMEN

Flow-mediated outward remodeling (FMR) is involved in postischemic revascularization. Angiotensin II type 2 receptor (AT2R), through activation of T-cell-mediated IL-17 production, and estrogens are involved in FMR. Thus, we investigated the interplay between estrogens and AT2R in FMR using a model of ligation of feed arteries supplying collateral pathways in mouse mesenteric arteries in vivo. Arteries were collected after 2 (inflammatory phase), 4 (diameter expansion phase), and 7 days (remodeling completed). We used AT2R+/+ and AT2R-/- ovariectomized (OVX) female mice treated or not with 17-beta-estradiol (E2). Seven days after ligation, arterial diameter was larger in high flow (HF) compared to normal flow (NF) arteries. FMR was absent in OVX mice and restored by E2. AT2R gene expression was higher in HF than in NF arteries only in E2-treated OVX AT2R+/+ mice. CD11b and TNF alpha levels (inflammatory phase), MMP2 and TIMP1 (extracellular matrix digestion), and NOS3 (diameter expansion phase) expression levels were higher in HF than in NF arteries only in E2-treated AT2R+/+ mice, not in the other groups. Thus, E2 is necessary for AT2R-dependent diameter expansion, possibly through activation of T-cell AT2R, in arteries submitted chronically to high blood flow.


Asunto(s)
Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Mecanotransducción Celular , Arterias Mesentéricas/efectos de los fármacos , Receptor de Angiotensina Tipo 2/metabolismo , Remodelación Vascular/efectos de los fármacos , Animales , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Femenino , Regulación de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ovariectomía , Receptor de Angiotensina Tipo 2/genética , Flujo Sanguíneo Regional , Estrés Mecánico , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640903

RESUMEN

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Asunto(s)
Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Terapia de Reemplazo de Estrógeno , Estrógenos/farmacología , Fertilidad/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Mutación Puntual , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/fisiopatología , Proliferación Celular/efectos de los fármacos , Endotelio Vascular/lesiones , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Activación Enzimática , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ovariectomía , Repitelización/efectos de los fármacos , Transducción de Señal , Factores de Tiempo , Útero/efectos de los fármacos , Útero/metabolismo , Remodelación Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
11.
Angiogenesis ; 23(2): 249-264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31900750

RESUMEN

INTRODUCTION: Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biological functions, the contribution of endothelial TXNIP has not been well-defined in regards to endothelial and vascular function or in post-ischemic revascularisation. We postulated that inhibition of endothelial TXNIP with siRNA or in a Cre-LoxP system could be involved in protection from high fat, high protein, low carbohydrate (HFHPLC) diet-induced oxidative stress and endothelial dysfunction, leading to vascular damage and impaired revascularisation in vivo. METHODS AND RESULTS: To investigate the role of endothelial TXNIP, the TXNIP gene was deleted in endothelial cells using anti-TXNIP siRNA treatment or the Cre-LoxP system. Murine models were fed a HFHPLC diet, known to induce metabolic disorders. Endothelial TXNIP targeting resulted in protection against metabolic disorder-related endothelial oxidative stress and endothelial dysfunction. This protective effect mitigates media cell loss induced by metabolic disorders and hampered metabolic disorder-related vascular dysfunction assessed by aortic reactivity and distensibility. In aortic ring cultures, metabolic disorders impaired vessel sprouting and this alteration was alleviated by deletion of endothelial TXNIP. When subjected to ischemia, mice fed a HFHPLC diet exhibited defective post-ischemic angiogenesis and impaired blood flow recovery in hind limb ischemia. However, reducing endothelial TXNIP rescued metabolic disorder-related impairment of ischemia-induced revascularisation. CONCLUSION: Collectively, these results show that targeting endothelial TXNIP in metabolic disorders is essential to maintaining endothelial function, vascular function and improving ischemia-induced revascularisation, making TXNIP a potential therapeutic target for therapy of vascular complications related to metabolic disorders.


Asunto(s)
Proteínas Portadoras/genética , Células Endoteliales/fisiología , Isquemia , Enfermedades Metabólicas/fisiopatología , Neovascularización Fisiológica/genética , Tiorredoxinas/genética , Animales , Células Cultivadas , Citoprotección/genética , Miembro Posterior/irrigación sanguínea , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/prevención & control , Masculino , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/fisiología
13.
Proc Natl Acad Sci U S A ; 111(2): E283-90, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24371309

RESUMEN

Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERα is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERα (C451A-ERα) to obtain membrane-specific loss of function of ERα. The abrogation of membrane localization of ERα in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERα mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERα mice. A complementary mutant mouse lacking the transactivation function AF-2 of ERα (ERα-AF2(0)) provided selective loss of function of nuclear ERα actions. In ERα-AF2(0), the acceleration of endothelial repair in response to estrogen-dendrimer conjugate, which is a membrane-selective ER ligand, was unaltered, demonstrating integrity of MISS actions. In genome-wide analysis of uterine gene expression, the vast majority of E2-dependent gene regulation was abrogated in ERα-AF2(0), whereas in C451A-ERα it was nearly fully preserved, indicating that membrane-to-nuclear receptor cross-talk in vivo is modest in the uterus. Thus, this work genetically segregated membrane versus nuclear actions of a steroid hormone receptor and demonstrated their in vivo tissue-specific roles.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrógeno/genética , Ovario/fisiología , Útero/metabolismo , Análisis de Varianza , Animales , Western Blotting , Movimiento Celular , Biología Computacional , Células Endoteliales , Receptor alfa de Estrógeno/metabolismo , Femenino , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Lipoilación/genética , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Ovario/metabolismo , Mutación Puntual/genética , Receptor Cross-Talk/fisiología
14.
Arterioscler Thromb Vasc Biol ; 34(6): 1281-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24700123

RESUMEN

OBJECTIVE: Flow (shear stress)-mediated outward remodeling (FMR) of resistance arteries is a key adaptive process allowing collateral growth after arterial occlusion but declining with age. 17-ß-estradiol (E2) has a key role in this process through activation of estrogen receptor α (ERα). Thus, we investigated the impact of age and timing for estrogen efficacy on FMR. APPROACH AND RESULTS: Female rats, 3 to 18 months old, were submitted to surgery to increase blood flow locally in 1 mesenteric artery in vivo. High-flow and normal-flow arteries were collected 2 weeks later for in vitro analysis. Diameter increased by 27% in high-flow arteries compared with normal-flow arteries in 3-month-old rats. The amplitude of remodeling declined with age (12% in 18-month-old rats) in parallel with E2 blood level and E2 substitution failed restoring remodeling in 18-month-old rats. Ovariectomy of 3-, 9-, and 12-month-old rats abolished FMR, which was restored by immediate E2 replacement. Nevertheless, this effect of E2 was absent 9 months after ovariectomy. In this latter group, ERα and endothelial nitric oxide synthase expression were reduced by half compared with age-matched rats recently ovariectomized. FMR did not occur in ERα(-/-) mice, whereas it was decreased by 50% in ERα(+/-) mice, emphasizing the importance of gene dosage in high-flow remodeling. CONCLUSIONS: E2 deprivation, rather than age, leads to decline in FMR, which can be prevented by early exogenous E2. However, delayed E2 replacement was ineffective on FMR, underlining the importance of timing of this estrogen action.


Asunto(s)
Estradiol/fisiología , Arterias Mesentéricas/fisiología , Envejecimiento , Animales , Endotelio Vascular/fisiología , Estradiol/sangre , Receptor alfa de Estrógeno/análisis , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Femenino , Arterias Mesentéricas/patología , Óxido Nítrico Sintasa de Tipo III/análisis , Ovariectomía , Ratas , Ratas Wistar , Flujo Sanguíneo Regional , Estrés Mecánico , Superóxido Dismutasa/metabolismo , Factores de Tiempo , Resistencia Vascular , Vasodilatación
15.
J Biol Chem ; 288(51): 36662-75, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24178296

RESUMEN

Resveratrol (RSV) has been shown to be involved in the regulation of energetic metabolism, generating increasing interest in therapeutic use. SIRT1 has been described as the main target of RSV. However, recent reports have challenged the hypothesis of its direct activation by RSV, and the signaling pathways remain elusive. Here, the effects of RSV on mitochondrial metabolism are detailed both in vivo and in vitro using murine and cellular models and isolated enzymes. We demonstrate that low RSV doses (1-5 µM) directly stimulate NADH dehydrogenases and, more specifically, mitochondrial complex I activity (EC50 ∼1 µM). In HepG2 cells, this complex I activation increases the mitochondrial NAD(+)/NADH ratio. This higher NAD(+) level initiates a SIRT3-dependent increase in the mitochondrial substrate supply pathways (i.e. the tricarboxylic acid cycle and fatty acid oxidation). This effect is also seen in liver mitochondria of RSV-fed animals (50 mg/kg/day). We conclude that the increase in NADH oxidation by complex I is a crucial event for SIRT3 activation by RSV. Our results open up new perspectives in the understanding of the RSV signaling pathway and highlight the critical importance of RSV doses used for future clinical trials.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Hepatocitos/efectos de los fármacos , NAD/metabolismo , Sirtuina 3/metabolismo , Estilbenos/farmacología , Animales , Activación Enzimática , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Resveratrol
16.
Am J Physiol Heart Circ Physiol ; 307(5): H649-57, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25015969

RESUMEN

High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet.


Asunto(s)
Aorta/metabolismo , Dieta Baja en Carbohidratos/efectos adversos , Proteínas en la Dieta/administración & dosificación , Intolerancia a la Glucosa/etiología , Miocardio/metabolismo , Disfunción Ventricular Izquierda/etiología , Factores de Edad , Animales , Aorta/patología , Glucemia/metabolismo , Proteínas en la Dieta/efectos adversos , Ecocardiografía , Intolerancia a la Glucosa/metabolismo , Metabolismo de los Lípidos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Resistina/sangre , Triglicéridos/sangre , Disfunción Ventricular Izquierda/metabolismo
17.
Cardiovasc Diabetol ; 13: 55, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24581152

RESUMEN

BACKGROUND: A chronic increase in blood flow in resistance arteries is associated with increased lumen diameter (outward remodeling) and improved endothelium (NO)-mediated relaxation. Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases. Nevertheless, it is impaired in 12 to 24-month old rats and in young Zucker Diabetic Fatty (ZDF) rats due to advanced glycation end products (AGEs) and oxidative stress. As type 2 diabetes occurs preferentially in older subjects we investigated flow-mediated remodeling and the effect of the AGEs breaker ALT-711 associated or not to the antioxidant TEMPOL in one-year old lean (LZ) and ZDF rats. METHODS: Mesenteric resistance arteries were exposed to high (HF) or normal blood flow (NF) in vivo. They were collected after 2 weeks for in vitro analysis. RESULTS: In LZ rats, diameter expansion did not occur despite a significant increase in blood flow in HF arteries. Nevertheless, endothelium-mediated relaxation was higher in HF than in NF arteries. ALT-711, alone or in combination with TEMPOL, restored outward remodeling in HF arteries in association with AGEs reduction. TEMPOL alone had no effect. ALT-711, TEMPOL or the combination of the 2 drugs did not significantly affect endothelium-mediated relaxation in HF and NF arteries.In ZDF rats, diameter did not increase despite the increase in blood flow and endothelium-mediated relaxation was further decreased in HF arteries in association with AGEs accumulation and excessive oxidative stress. In both NF and HF arteries, endothelium-mediated relaxation was lower in ZDF than in LZ rats. ALT-711, TEMPOL or their combination did not improve remodeling (diameter equivalent in HF and NF arteries). In parallel, they did not reduce AGEs level and did not improve MMPs activity. Nevertheless, ALT-711 and TEMPOL partly improved endothelium-mediated relaxation through a reduction of oxidative stress and the association of ALT-711 and TEMPOL fully restored relaxation to the level found in LZ rats. CONCLUSIONS: ALT-711 did not improve outward remodeling in mature ZDF rats but it reduced oxidative stress and consequently improved endothelium-dependent relaxation. In mature LZ rats, ALT-711 improved outward remodeling and reduced AGEs level. Consequently, AGEs breaking is differently useful in ageing whether it is associated with diabetes or not.


Asunto(s)
Envejecimiento/metabolismo , Antioxidantes/farmacología , Velocidad del Flujo Sanguíneo/fisiología , Productos Finales de Glicación Avanzada/metabolismo , Resistencia Vascular/fisiología , Vasodilatación/fisiología , Envejecimiento/efectos de los fármacos , Animales , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Masculino , Ratas , Ratas Zucker , Resultado del Tratamiento , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
18.
Antioxidants (Basel) ; 11(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35739974

RESUMEN

Flow (shear stress)-mediated dilation (FMD) of resistance arteries is a rapid endothelial response involved in tissue perfusion. FMD is reduced early in cardiovascular diseases, generating a major risk factor for atherosclerosis. As alteration of mitochondrial fusion reduces endothelial cells' (ECs) sprouting and angiogenesis, we investigated its role in ECs responses to flow. Opa1 silencing reduced ECs (HUVECs) migration and flow-mediated elongation. In isolated perfused resistance arteries, FMD was reduced in Opa1+/- mice, a model of the human disease due to Opa1 haplo-insufficiency, and in mice with an EC specific Opa1 knock-out (EC-Opa1). Reducing mitochondrial oxidative stress restored FMD in EC-Opa1 mice. In isolated perfused kidneys from EC-Opa1 mice, flow induced a greater pressure, less ATP, and more H2O2 production, compared to control mice. Opa1 expression and mitochondrial length were reduced in ECs submitted in vitro to disturbed flow and in vivo in the atheroprone zone of the mouse aortic cross. Aortic lipid deposition was greater in Ldlr-/--Opa1+/- and in Ldlr-/--EC-Opa1 mice than in control mice fed with a high-fat diet. In conclusion, we found that reduction in mitochondrial fusion in mouse ECs altered the dilator response to shear stress due to excessive superoxide production and induced greater atherosclerosis development.

19.
Mech Ageing Dev ; 194: 111416, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33333130

RESUMEN

The present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard.


Asunto(s)
Envejecimiento , Arterias/fisiopatología , Isquemia/fisiopatología , Remodelación Vascular , Factores de Edad , Animales , Arterias/inmunología , Arterias/metabolismo , Circulación Colateral , Estrógenos/metabolismo , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Isquemia/inmunología , Isquemia/metabolismo , Masculino , Mecanotransducción Celular , Neovascularización Fisiológica , Óxido Nítrico/metabolismo , Estrés Oxidativo , Flujo Sanguíneo Regional , Factores Sexuales , Estrés Mecánico
20.
Elife ; 102021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842136

RESUMEN

Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.


Asunto(s)
Circulación Sanguínea , Receptor alfa de Estrógeno/genética , Peróxido de Hidrógeno/metabolismo , Animales , Receptor alfa de Estrógeno/metabolismo , Femenino , Ligandos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA