Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 310(3): H426-35, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26637557

RESUMEN

Pathological enhancement of late Na(+) current (INa) can potentially modify intracellular ion homeostasis and contribute to cardiac dysfunction. We tested the hypothesis that modulation of late INa can be a source of intracellular Na(+) ([Na(+)]i) overload. Late INa was enhanced by exposing rabbit ventricular myocytes to Anemonia sulcata toxin II (ATX-II) and measured using whole cell patch-clamp technique. [Na(+)]i was determined with fluorescent dye Asante NaTRIUM Green-2 AM. Pacing-induced changes in the dye fluorescence measured at 37°C were more pronounced in ATX-II-treated cells than in control (dye washout prevented calibration). At 22-24°C, resting [Na(+)]i was 6.6 ± 0.8 mM. Treatment with 5 nM ATX-II increased late INa 8.7-fold. [Na(+)]i measured after 2 min of electrical stimulation (1 Hz) was 10.8 ± 1.5 mM and 22.1 ± 1.6 mM (P < 0.001) in the absence and presence of 5 nM ATX-II, respectively. Inhibition of late INa with GS-967 (1 µM) prevented Na(+) i accumulation. A strong positive correlation was observed between the late INa and the pacing-induced increase of [Na(+)]i (R(2) = 0.88) and between the rise in [Na(+)]i and the increases in cytosolic Ca(2+) (R(2) = 0.96). ATX-II, tetrodotoxin, or GS-967 did not affect [Na(+)]i in quiescent myocytes suggesting that late INa was solely responsible for triggering the ATX-II effect on [Na(+)]i. Experiments with pinacidil and E4031 indicate that prolongation of the action potential contributes to as much as 50% of the [Na(+)]i overload associated with the increase in late INa caused by ATX-II. Enhancement of late INa can cause intracellular Na(+) overload in ventricular myocytes.


Asunto(s)
Calcio/metabolismo , Cardiotónicos/farmacología , Venenos de Cnidarios/farmacología , Miocitos Cardíacos/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Sodio/metabolismo , Animales , Proteínas Fluorescentes Verdes , Ventrículos Cardíacos/citología , Indoles , Miocitos Cardíacos/metabolismo , Imagen Óptica , Técnicas de Placa-Clamp , Conejos , Canales de Sodio/metabolismo
2.
J Mol Cell Cardiol ; 76: 247-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25252177

RESUMEN

An increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/enzimología , Sodio/metabolismo , Potenciales de Acción , Animales , Señalización del Calcio , Femenino , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/enzimología , Espacio Intracelular/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Conejos , Especies Reactivas de Oxígeno/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 302(1): H253-61, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21984545

RESUMEN

The role of calsequestrin (CASQ2) in cardiac sarcoplasmic reticulum (SR) calcium (Ca(2+)) transport has gained significant attention since point mutations in CASQ2 were reported to cause ventricular arrhythmia. In the present study, we have critically evaluated the functional consequences of expressing the CASQ2(D307H) mutant protein in the CASQ2 null mouse. We recently reported that the mutant CASQ2(D307H) protein can be stably expressed in CASQ2 null hearts, and it targets appropriately to the junctional SR (Kalyanasundaram A, Bal NC, Franzini-Armstrong C, Knollmann BC, Periasamy M. J Biol Chem 285: 3076-3083, 2010). In this study, we found that introduction of CASQ2(D307H) protein in the CASQ2 null background partially restored triadin 1 levels, which were decreased in the CASQ2 null mice. Despite twofold expression (relative to wild-type CASQ2), the mutant protein failed to increase SR Ca(2+) load. We also found that the Ca(2+) transient decays slower in the CASQ2 null and CASQ2(D307H) cells. CASQ2(D307H) myocytes, when rhythmically paced and challenged with isoproterenol, exhibit spontaneous Ca(2+) waves similar to CASQ2 null myocytes; however, the stability of Ca(2+) cycling was increased in the CASQ2(D307H) myocytes. In the presence of isoproterenol, Ca(2+)-transient amplitude in CASQ2(D307H) myocytes was significantly decreased, possibly indicating an inherent defect in Ca(2+) buffering capacity and release from the mutant CASQ2 at high Ca(2+) concentrations. We also observed polymorphic ventricular tachycardia in the CASQ2(D307H) mice, although lesser than in the CASQ2 null mice. These data suggest that CASQ2(D307H) point mutation may affect Ca(2+) buffering capacity and Ca(2+) release. We propose that poor interaction between CASQ2(D307H) and triadin 1 could affect ryanodine receptor 2 stability, thereby increasing susceptibility to delayed afterdepolarizations and triggered arrhythmic activity.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Calsecuestrina/metabolismo , Miocitos Cardíacos/metabolismo , Mutación Puntual , Retículo Sarcoplasmático/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Calsecuestrina/genética , Estimulación Cardíaca Artificial , Cardiotónicos/farmacología , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Isoproterenol/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Musculares/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Factores de Tiempo
4.
J Pharmacol Toxicol Methods ; 117: 107193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35792285

RESUMEN

According to the ICH S7B guideline, drug candidates are screened for hERG block prior to first-in-human testing to predict the likelihood of delayed repolarization associated with a rare, but life-threatening, ventricular tachyarrhythmia. The new ICH E14 Q&As guideline allows hERG results to be used in later clinical development for decision-making (Q&As 5.1 and 6.1). To pursue this path, the hERG assay should be conducted following the new ICH S7B Q&A 2.1 guideline, which calls for best practice considerations of the recording temperature, voltage protocol, stimulation frequency, recording/data quality, and concentration verification. This study investigated hERG block by cisapride, dofetilide, terfenadine, sotalol, and E-4031 - positive controls commonly used to demonstrate assay sensitivity - using the manual whole cell patch clamp method and an action potential-like voltage protocol presented at 0.2 Hz. Recordings were conducted at room and near physiological temperature. Drug concentrations were measured using samples collected during real patch clamp experiments and satellite experiments. Results showed temperature effects for E-4031, terfenadine, and sotalol, but not cisapride and dofetilide. Cisapride and terfenadine showed substantial concentration losses, largely due to nonspecific binding to the perfusion apparatus. Using concentrations measured from the real and satellite experiments to assess block potencies yielded comparable results, indicating that satellite sample collection may be viable for drugs with nonspecific binding concerns only. In summary, this study provides block potencies for 5 hERG positive controls, and serves as a case study for hERG assays conducted, and results illustrated in accordance with the new ICH E14/S7B Q&As.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Sotalol , Cisaprida , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Fenetilaminas , Sotalol/farmacología , Sulfonamidas , Temperatura , Terfenadina/farmacología
5.
Am J Physiol Cell Physiol ; 301(3): C577-86, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21677263

RESUMEN

Late Na(+) current (I(NaL)) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) are both increased in the diseased heart. Recently, CaMKII was found to phosphorylate the Na(+) channel 1.5 (Na(v)1.5), resulting in enhanced I(NaL). Conversely, an increase of I(NaL) would be expected to cause elevation of intracellular Ca(2+) and activation of CaMKII. However, a relationship between enhancement of I(NaL) and activation of CaMKII has yet to be demonstrated. We investigated whether Na(+) influx via Na(v)1.5 leads to CaMKII activation and explored the functional significance of this pathway. In neonatal rat ventricular myocytes (NRVM), treatment with the I(NaL) activators anemone toxin II (ATX-II) or veratridine increased CaMKII autophosphorylation and increased phosphorylation of CaMKII substrates phospholamban and ryanodine receptor 2. Knockdown of Na(v)1.5 (but not Na(v)1.1 or Na(v)1.2) prevented ATX-II-induced CaMKII phosphorylation, providing evidence for a specific role of Na(v)1.5 in CaMKII activation. In support of this view, CaMKII activity was also increased in hearts of transgenic mice overexpressing a gain-of-function Na(v)1.5 mutant (N(1325)S). The effects of both ATX-II and the N(1325)S mutation were reversed by either I(NaL) inhibition (with ranolazine or tetrodotoxin) or CaMKII inhibition (with KN93 or autocamtide 2-related inhibitory peptide). Furthermore, ATX-II treatment also induced CaMKII-Na(v)1.5 coimmunoprecipitation. The same association between CaMKII and Na(v)1.5 was also found in N(1325)S mice, suggesting a direct protein-protein interaction. Pharmacological inhibitions of either CaMKII or I(NaL) also prevented ATX-II-induced cell death in NRVM and reduced the incidence of polymorphic ventricular tachycardia induced by ATX-II in rat perfused hearts. Taken together, these results suggest that a Na(v)1.5-dependent increase in Na(+) influx leads to activation of CaMKII, which in turn phosphorylates Na(v)1.5, further promoting Na(+) influx. Pharmacological inhibition of either CaMKII or Na(v)1.5 can ameliorate cardiac dysfunction caused by excessive Na(+) influx.


Asunto(s)
Sustitución de Aminoácidos/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Sodio/metabolismo , Sodio/metabolismo , Acetanilidas/farmacología , Acetanilidas/uso terapéutico , Animales , Animales Recién Nacidos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Venenos de Cnidarios/farmacología , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Femenino , Expresión Génica/efectos de los fármacos , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5 , Péptidos/farmacología , Péptidos/uso terapéutico , Perfusión , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Piperazinas/uso terapéutico , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , ARN Interferente Pequeño/genética , Conejos , Ranolazina , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canales de Sodio/genética , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo , Taquicardia Ventricular/inducido químicamente , Taquicardia Ventricular/prevención & control , Tetrodotoxina/farmacología , Veratridina/farmacología
6.
J Physiol ; 588(Pt 15): 2905-17, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530114

RESUMEN

The sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR2) has been proposed to be an end target of neuronal nitric oxide synthase (NOS1) signalling. The purpose of this study is to investigate the mechanism of NOS1 modulation of RyR2 activity and the corresponding effect on myocyte function. Myocytes were isolated from NOS1 knockout (NOS1(/)) and wild-type mice. NOS1(/) myocytes displayed a decreased fractional SR Ca(2+) release, NOS1 knockout also led to reduced RyR2 S-nitrosylation levels. RyR2 channels from NOS1(/) hearts had decreased RyR2 open probability. Additionally, knockout of NOS1 led to a decrease in [(3)H]ryanodine binding, Ca(2+) spark frequency (CaSpF) and a rightward shift in the SR Ca(2+) leak/load relationship. Similar effects were observed with acute inhibition of NOS1. These data are indicative of decreased RyR2 activity in myocytes with NOS1 knockout or acute inhibition. Interestingly, the NO donor and nitrosylating agent SNAP reversed the depressed RyR2 open probability, the reduced CaSpF, and caused a leftward shift in the leak/load relationship in NOS1(/) myocytes. SNAP also normalized Ca(2+) transient and cell shortening amplitudes and SR fractional release in myocytes with NOS1 knockout or acute inhibition. Furthermore, SNAP was able to normalize the RyR2 S-nitrosylation levels. These data suggest that NOS1 signalling increases RyR2 activity via S-nitrosylation, which contributes to the NOS1-induced positive inotropic effect. Thus, RyR2 is an important end target of NOS1.


Asunto(s)
Contracción Muscular/fisiología , Miocitos Cardíacos/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Células Cultivadas , Retroalimentación Fisiológica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
ACS Med Chem Lett ; 11(3): 358-364, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32184970

RESUMEN

We describe the discovery of three structurally differentiated potent and selective MTH1 inhibitors and their subsequent use to investigate MTH1 as an oncology target, culminating in target (in)validation. Tetrahydronaphthyridine 5 was rapidly identified as a highly potent MTH1 inhibitor (IC50 = 0.043 nM). Cocrystallization of 5 with MTH1 revealed the ligand in a Φ-cis-N-(pyridin-2-yl)acetamide conformation enabling a key intramolecular hydrogen bond and polar interactions with residues Gly34 and Asp120. Modification of literature compound TH287 with O- and N-linked aryl and alkyl aryl substituents led to the discovery of potent pyrimidine-2,4,6-triamine 25 (IC50 = 0.49 nM). Triazolopyridine 32 emerged as a highly selective lead compound with a suitable in vitro profile and desirable pharmacokinetic properties in rat. Elucidation of the DNA damage response, cell viability, and intracellular concentrations of oxo-NTPs (oxidized nucleoside triphosphates) as a function of MTH1 knockdown and/or small molecule inhibition was studied. Based on our findings, we were unable to provide evidence to further pursue MTH1 as an oncology target.

8.
Biophys J ; 95(4): 2037-48, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18469084

RESUMEN

Cardiac calsequestrin (CASQ2) is an intrasarcoplasmic reticulum (SR) low-affinity Ca-binding protein, with mutations that are associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). To better understand how CASQ2 mutants cause CPVT, we expressed two CPVT-linked CASQ2 mutants, a truncated protein (at G112+5X, CASQ2(DEL)) or CASQ2 containing a point mutation (CASQ2(R33Q)), in canine ventricular myocytes and assessed their effects on Ca handling. We also measured CASQ2-CASQ2 variant interactions using fluorescence resonance transfer in a heterologous expression system, and evaluated CASQ2 interaction with triadin. We found that expression of CASQ2(DEL) or CASQ2(R33Q) altered myocyte Ca signaling through two different mechanisms. Overexpressing CASQ2(DEL) disrupted the CASQ2 polymerization required for high capacity Ca binding, whereas CASQ2(R33Q) compromised the ability of CASQ2 to control ryanodine receptor (RyR2) channel activity. Despite profound differences in SR Ca buffering strengths, local Ca release terminated at the same free luminal [Ca] in control cells, cells overexpressing wild-type CASQ2 and CASQ2(DEL)-expressing myocytes, suggesting that a decline in [Ca](SR) is a signal for RyR2 closure. Importantly, disrupting interactions between the RyR2 channel and CASQ2 by expressing CASQ2(R33Q) markedly lowered the [Ca](SR) threshold for Ca release termination. We conclude that CASQ2 in the SR determines the magnitude and duration of Ca release from each SR terminal by providing both a local source of releasable Ca and by effects on luminal Ca-dependent RyR2 gating. Furthermore, two CPVT-inducing CASQ2 mutations, which cause mechanistically different defects in CASQ2 and RyR2 function, lead to increased diastolic SR Ca release events and exhibit a similar CPVT disease phenotype.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Calsecuestrina/metabolismo , Muerte Súbita Cardíaca , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Calsecuestrina/genética , Células Cultivadas , Perros , Humanos
9.
Circ Res ; 98(9): 1151-8, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16601229

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.


Asunto(s)
Calsecuestrina/metabolismo , Muerte Súbita Cardíaca/etiología , Ejercicio Físico , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Sustitución de Aminoácidos , Animales , Arginina , Unión Competitiva , Calcio/metabolismo , Calsecuestrina/genética , Estimulación Cardíaca Artificial/métodos , Catecolaminas/metabolismo , Femenino , Glutamina , Humanos , Membranas Intracelulares/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Ratas , Proteínas Recombinantes/metabolismo , Retículo Sarcoplasmático/metabolismo , Síncope/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
10.
Cardiovasc Res ; 75(1): 69-78, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17449018

RESUMEN

OBJECTIVE: A naturally-occurring mutation in cardiac calsequestrin (CASQ2) at amino acid 307 was discovered in a highly inbred family and hypothesized to cause Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The goal of this study was to establish a causal link between CASQ2(D307H) and the CPVT phenotype using an in vivo model. METHODS AND RESULTS: Cardiac-specific expression of the CASQ2(D307H) transgene was achieved using the alpha-MHC promoter. Multiple transgenic (TG) mouse lines expressing CASQ2(D307H) from 2- to 6-fold possess structurally normal hearts without any sign of hypertrophy. The hearts displayed normal ventricular function. Myocytes isolated from TG mice had diminished I(Ca)-induced Ca2+ transient amplitude and duration, as well as increased Ca2+ spark frequency. These myocytes, when exposed to isoproterenol and caffeine, displayed disturbances in their rhythmic Ca2+ oscillations and membrane potential, and delayed afterdepolarizations. ECG monitoring revealed that TG mice challenged with isoproterenol and caffeine developed complex ventricular arrhythmias, including non-sustained polymorphic ventricular tachycardia. CONCLUSIONS: The findings of the present study demonstrate that expression of mutant CASQ2(D307H) in the mouse heart results in abnormal myocyte Ca2+ handling and predisposes to complex ventricular arrhythmias similar to the CPVT phenotype observed in human patients.


Asunto(s)
Calcio/metabolismo , Calsecuestrina/genética , Muerte Súbita Cardíaca/etiología , Mutación Missense , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Animales , Cafeína/farmacología , Señalización del Calcio , Cardiotónicos/farmacología , Electrocardiografía , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología
11.
Circulation ; 114(10): 1012-9, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16908766

RESUMEN

BACKGROUND: Four distinct mutations in the human cardiac calsequestrin gene (CASQ2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). The mechanisms leading to the clinical phenotype are still poorly understood because only 1 CASQ2 mutation has been characterized in vitro. METHODS AND RESULTS: We identified a homozygous 16-bp deletion at position 339 to 354 leading to a frame shift and a stop codon after 5aa (CASQ2(G112+5X)) in a child with stress-induced ventricular tachycardia and cardiac arrest. The same deletion was also identified in association with a novel point mutation (CASQ2(L167H)) in a highly symptomatic CPVT child who is the first CPVT patient carrier of compound heterozygous CASQ2 mutations. We characterized in vitro the properties of CASQ2 mutants: CASQ2(G112+5X) did not bind Ca2+, whereas CASQ2(L167H) had normal calcium-binding properties. When expressed in rat myocytes, both mutants decreased the sarcoplasmic reticulum Ca2+-storing capacity and reduced the amplitude of I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks in permeabilized myocytes. Exposure of myocytes to isoproterenol caused the development of delayed afterdepolarizations in CASQ2(G112+5X). CONCLUSIONS: CASQ2(L167H) and CASQ2(G112+5X) alter CASQ2 function in cardiac myocytes, which leads to reduction of active sarcoplasmic reticulum Ca2+ release and calcium content. In addition, CASQ2(G112+5X) displays altered calcium-binding properties and leads to delayed afterdepolarizations. We conclude that the 2 CASQ2 mutations identified in CPVT create distinct abnormalities that lead to abnormal intracellular calcium regulation, thus facilitating the development of tachyarrhythmias.


Asunto(s)
Calsecuestrina/genética , Síncope/genética , Taquicardia Ventricular/genética , Sustitución de Aminoácidos , Animales , Niño , Femenino , Técnicas de Transferencia de Gen , Tamización de Portadores Genéticos , Humanos , Masculino , Células Musculares/fisiología , Mutagénesis Sitio-Dirigida , Mutación , Linaje , Mutación Puntual , Ratas , Taquicardia Ventricular/fisiopatología , Transfección
12.
J Clin Invest ; 114(7): 994-1001, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15467839

RESUMEN

Parasympathetic slowing of the heart rate is predominantly mediated by acetylcholine-dependent activation of the G protein-gated potassium (K+) channel (IK,ACh). This channel is composed of 2 inward-rectifier K+ (Kir) channel subunits, Kir3.1 and Kir3.4, that display distinct functional properties. Here we show that subunit composition of IK,ACh changes during embryonic development. At early stages, IK,ACh is primarily formed by Kir3.1, while in late embryonic and adult cells, Kir3.4 is the predominant subunit. This change in subunit composition results in reduced rectification of IK,ACh, allowing for marked K+ currents over the whole physiological voltage range. As a consequence, IK,ACh is able to generate the membrane hyperpolarization that underlies the strong negative chronotropy occurring in late- but not early-stage atrial cardiomyocytes upon application of muscarinic agonists. Both strong negative chronotropy and membrane hyperpolarization can be induced in early-stage cardiomyocytes by viral overexpression of the mildly rectifying Kir3.4 subunit. Thus, a switch in subunit composition is used to adopt IK,ACh to its functional role in adult cardiomyocytes.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Corazón/embriología , Corazón/crecimiento & desarrollo , Miocardio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Subunidades de Proteína/metabolismo , Acetilcolina/metabolismo , Potenciales de Acción/fisiología , Animales , Venenos de Abeja/farmacología , Carbacol/farmacología , Células Cultivadas , Agonistas Colinérgicos/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Ratones , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Subunidades de Proteína/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/metabolismo , Vasodilatadores/metabolismo
13.
Circ Res ; 96(6): 651-8, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15731460

RESUMEN

Triadin 1 (TRD) is an integral membrane protein that associates with the ryanodine receptor (RyR2), calsequestrin (CASQ2) and junctin to form a macromolecular Ca signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). To define the functional role of TRD, we examined the effects of adenoviral-mediated overexpression of the wild-type protein (TRD(WT)) or a TRD mutant lacking the putative CASQ2 interaction domain residues 200 to 224 (TRD(Del.200-224)) on intracellular Ca signaling in adult rat ventricular myocytes. Overexpression of TRD(WT) reduced the amplitude of I(Ca)- induced Ca transients (at 0 mV) but voltage dependency of the Ca transients was markedly widened and flattened, such that even small I(Ca) at low and high depolarizations triggered maximal Ca transients. The frequency of spontaneous Ca sparks was significantly increased in TRD(WT) myocytes, whereas the amplitude of individual sparks was reduced. Consistent with these changes in Ca release signals, SR Ca content was decreased in TRD(WT) myocytes. Periodic electrical stimulation of TRD(WT) myocytes resulted in irregular, spontaneous Ca transients and arrhythmic oscillations of the membrane potential. Expression of TRD(Del.200-224) failed to produce any of the effects of the wild-type protein. The lipid bilayer technique was used to record the activity of single RyR2 channels using microsome samples obtained from control, TRD(WT) and TRD(Del.200-224) myocytes. Elevation of TRD(WT) levels increased the open probability of RyR2 channels, whereas expression of the mutant protein did not affect RyR2 activity. We conclude that TRD enhances cardiac excitation-contraction coupling by directly stimulating the RyR2. Interaction of TRD with RyR2 may involve amino acids 200 to 224 in C-terminal domain of TRD.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/fisiología , Proteínas Portadoras/fisiología , Proteínas Musculares/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Adenoviridae/genética , Animales , Arritmias Cardíacas/genética , Calcio/fisiología , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Perros , Estimulación Eléctrica , Expresión Génica , Vectores Genéticos/genética , Péptidos y Proteínas de Señalización Intracelular , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos , Sustancias Macromoleculares , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/fisiología , Microsomas/fisiología , Oxigenasas de Función Mixta/fisiología , Modelos Cardiovasculares , Proteínas Musculares/biosíntesis , Proteínas Musculares/química , Proteínas Musculares/genética , Miocitos Cardíacos/ultraestructura , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/fisiología , Canal Liberador de Calcio Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo , Transducción Genética
14.
Life Sci ; 81(14): 1152-9, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17884106

RESUMEN

While cardiac resynchronization therapy (CRT) has been shown to reduce morbidity and mortality in heart failure (HF) patients, the fundamental mechanisms for the efficacy of CRT are poorly understood. The lack of understanding of these basic mechanisms represents a significant barrier to our understanding of the pathogenesis of HF and potential recovery mechanisms. Our purpose was to determine cellular mechanisms for the observed improvement in chronic HF after CRT. We used a canine model of chronic nonischemic cardiomyopathy. After 15 months, dogs were randomized to continued RV tachypacing (untreated HF) or CRT for an additional 9 months. Six minute walk tests, echocardiograms, and electrocardiograms were done to assess the functional response to therapy. Left ventricular (LV) midmyocardial myocytes were isolated to study electrophysiology and intracellular calcium regulation. Compared to untreated HF, CRT improved HF-induced increases in LV volumes, diameters and mass (p<0.05). CRT reversed HF-induced prolongations in LV myocyte repolarization (p<0.05) and normalized HF-induced depolarization (p<0.03) of the resting membrane potential. CRT improved HF-induced reductions in calcium (p<0.05). CRT did not attenuate the HF-induced increases in LV interstitial fibrosis. Using a translational approach in a chronic HF model, CRT significantly improved LV structure; this was accompanied by improved LV myocyte electrophysiology and calcium regulation. The beneficial effects of CRT may be attributable, in part, to improved LV myocyte function.


Asunto(s)
Estimulación Cardíaca Artificial , Cardiomiopatías/fisiopatología , Cardiomiopatías/terapia , Remodelación Ventricular , Animales , Calcio/metabolismo , Enfermedad Crónica , Desfibriladores Implantables , Modelos Animales de Enfermedad , Perros , Ecocardiografía , Electrocardiografía , Electrofisiología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Técnicas In Vitro , Miocitos Cardíacos/fisiología , Marcapaso Artificial
15.
Circ Res ; 91(5): 414-20, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12215490

RESUMEN

Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivation of the SR Ca2+ release channels/ryanodine receptors (RyRs). To explore the importance of cytosolic versus luminal Ca2+ regulatory mechanisms in controlling CICR, we assessed the impact of intra-SR Ca2+ buffering on global and local Ca2+ release properties of patch-clamped or permeabilized rat ventricular myocytes. Exogenous, low-affinity Ca2+ buffers (5 to 20 mmol/L ADA, citrate or maleate) were introduced into the SR by exposing the cells to "internal" solutions containing the buffers. Enhanced Ca2+ buffering in the SR was confirmed by an increase in the total SR Ca2+ content, as revealed by application of caffeine. At the whole-cell level, intra-SR [Ca2+] buffering dramatically increased the magnitude of Ca2+ transients induced by I(Ca) and deranged the smoothly graded I(Ca)-SR Ca2+ release relationship. The amplitude and time-to-peak of local Ca2+ release events, Ca2+ sparks, as well as the duration of local Ca2+ release fluxes underlying sparks were increased up to 2- to 3-fold. The exogenous Ca2+ buffers in the SR also reduced the frequency of repetitive activity observed at individual release sites in the presence of the RyR activator Imperatoxin A. We conclude that regulation of RyR openings by local intra-SR [Ca2+] is responsible for termination of CICR and for the subsequent restitution behavior of Ca2+ release sites in cardiac muscle.


Asunto(s)
Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Calcio/farmacología , Canales de Calcio/fisiología , Permeabilidad de la Membrana Celular , Quelantes/farmacología , Citratos/farmacología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Masculino , Maleatos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
16.
Circ Res ; 94(4): 471-7, 2004 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-14715535

RESUMEN

Mutations in human cardiac calsequestrin (CASQ2), a high-capacity calcium-binding protein located in the sarcoplasmic reticulum (SR), have recently been linked to effort-induced ventricular arrhythmia and sudden death (catecholaminergic polymorphic ventricular tachycardia). However, the precise mechanisms through which these mutations affect SR function and lead to arrhythmia are presently unknown. In this study, we explored the effect of adenoviral-directed expression of a canine CASQ2 protein carrying the catecholaminergic polymorphic ventricular tachycardia-linked mutation D307H (CASQ2(D307H)) on Ca2+ signaling in adult rat myocytes. Total CASQ2 protein levels were consistently elevated approximately 4-fold in cells infected with adenoviruses expressing either wild-type CASQ2 (CASQ2(WT)) or CASQ2(D307H). Expression of CASQ2(D307H) reduced the Ca2+ storing capacity of the SR. In addition, the amplitude, duration, and rise time of macroscopic I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks were reduced significantly in myocytes expressing CASQ2(D307H). Myocytes expressing CASQ2(D307H) also displayed drastic disturbances of rhythmic oscillations in [Ca2+]i and membrane potential, with signs of delayed afterdepolarizations when undergoing periodic pacing and exposed to isoproterenol. Importantly, normal rhythmic activity was restored by loading the SR with the low-affinity Ca2+ buffer, citrate. Our data suggest that the arrhythmogenic CASQ2(D307H) mutation impairs SR Ca2+ storing and release functions and destabilizes the Ca2+-induced Ca2+ release mechanism by reducing the effective Ca2+ buffering inside the SR and/or by altering the responsiveness of the Ca2+ release channel complex to luminal Ca2+. These results establish at the cellular level the pathological link between CASQ2 mutations and the predisposition to adrenergically mediated arrhythmias observed in patients carrying CASQ2 defects.


Asunto(s)
Señalización del Calcio/fisiología , Calsecuestrina/genética , Muerte Súbita Cardíaca , Mutación Missense , Miocitos Cardíacos/metabolismo , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Adenoviridae/genética , Sustitución de Aminoácidos , Animales , Señalización del Calcio/genética , Calsecuestrina/fisiología , Perros , Vectores Genéticos/genética , Humanos , Activación del Canal Iónico , Sustancias Macromoleculares , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/fisiología , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/metabolismo
17.
Front Biosci ; 7: d1454-63, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12045014

RESUMEN

The amount of Ca2+ released from the sarcoplasmic reticulum (SR) is a principal determinant of cardiac contractility. Normally, the SR Ca2+ stores are mobilized through the mechanism of Ca2+-induced Ca2+ release (CICR). In this process, Ca2+ enters the cell through plasmalemmal voltage-dependent Ca2+ channels to activate the Ca2+ release channels in the SR membrane. Consequently, the control of Ca2+ release by cytosolic Ca2+ has traditionally been the main focus of cardiac excitation-contraction (EC) coupling research. Evidence obtained recently suggests that SR Ca release is controlled not only by cytosolic Ca2+, but also by Ca2+ in the lumen of the SR. The presence of a luminal Ca2+ sensor regulating release of SR luminal Ca2+ potentially has profound implications for our understanding of EC coupling and intracellular Ca2+ cycling. Here we review evidence, obtained using in situ and in vitro approaches, in support of such a luminal Ca2+ sensor in cardiac muscle. We also discuss the role of control of Ca2+ release channels by luminal Ca2+ in termination and stabilization of CICR, as well as in shaping the response of cardiac myocytes to various inotropic influences and diseased states such as Ca2+ overload and heart failure.


Asunto(s)
Calcio/fisiología , Miocardio/metabolismo , Retículo Sarcoplasmático/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/fisiología , Corazón/fisiología , Corazón/fisiopatología , Humanos , Miocardio/citología , Miocardio/patología , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
18.
PLoS One ; 7(12): e52005, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300588

RESUMEN

Nitric oxide (NO) and superoxide (O(2) (-)) are important cardiac signaling molecules that regulate myocyte contraction. For appropriate regulation, NO and O(2) (.-) must exist at defined levels. Unfortunately, the NO and O(2) (.-) levels are altered in many cardiomyopathies (heart failure, ischemia, hypertrophy, etc.) leading to contractile dysfunction and adverse remodeling. Hence, rescuing the nitroso-redox levels is a potential therapeutic strategy. Nitrone spin traps have been shown to scavenge O(2) (.-) while releasing NO as a reaction byproduct; and we synthesized a novel, cell permeable nitrone, 2-2-3,4-dihydro-2H-pyrrole 1-oxide (EMEPO). We hypothesized that EMEPO would improve contractile function in myocytes with altered nitroso-redox levels. Ventricular myocytes were isolated from wildtype (C57Bl/6) and NOS1 knockout (NOS1(-/-)) mice, a known model of NO/O(2) (.-) imbalance, and incubated with EMEPO. EMEPO significantly reduced O(2) (.-) (lucigenin-enhanced chemiluminescence) and elevated NO (DAF-FM diacetate) levels in NOS1(-/-) myocytes. Furthermore, EMEPO increased NOS1(-/-) myocyte basal contraction (Ca(2+) transients, Fluo-4AM; shortening, video-edge detection), the force-frequency response and the contractile response to ß-adrenergic stimulation. EMEPO had no effect in wildtype myocytes. EMEPO also increased ryanodine receptor activity (sarcoplasmic reticulum Ca(2+) leak/load relationship) and phospholamban Serine16 phosphorylation (Western blot). We also repeated our functional experiments in a canine post-myocardial infarction model and observed similar results to those seen in NOS1(-/-) myocytes. In conclusion, EMEPO improved contractile function in myocytes experiencing an imbalance of their nitroso-redox levels. The concurrent restoration of NO and O(2) (.-) levels may have therapeutic potential in the treatment of various cardiomyopathies.


Asunto(s)
Calcio/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo I/fisiología , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/farmacología , Retículo Sarcoplasmático/metabolismo , Animales , Esterificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción , Retículo Sarcoplasmático/efectos de los fármacos , Marcadores de Spin , Superóxidos/metabolismo
19.
Neoplasia ; 13(5): 428-38, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21532883

RESUMEN

The calcium-sensing receptor (CaR) is responsible for the regulation of extracellular calcium (Ca(2+) (o)) homeostasis. CaR activation has been shown to increase proliferation in several cancer cell lines; however, its presence or function has never been documented in lung cancer. We report that Ca(2+) (o)-activated CaR results in MAPK-mediated stimulation of parathyroid hormone-related protein (PTHrP) production in human lung squamous cell carcinoma (SCC) lines and humoral hypercalcemia of malignancy (HHM) in vivo. Furthermore, a single nucleotide polymorphism in CaR identified from a hypercalcemia-inducing lung SCC reduced the receptor's activation threshold leading to increased PTHrP expression and secretion. Increasing the expression of either wild-type CaR or a CaR variant with a single nucleotide polymorphism in the cytoplasmic domain was both necessary and sufficient for lung SCC to induce HHM. Because lung cancer patients who frequently develop HHM and PTHrP expression in lung cancer has been only partially explained, the significance of our findings indicates that CaR variants may provide a positive feedback between PTHrP and calcium and result in the syndrome of HHM.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Hipercalcemia/metabolismo , Hipercalcemia/fisiopatología , Neoplasias Pulmonares/metabolismo , Proteína Relacionada con la Hormona Paratiroidea , Receptores Sensibles al Calcio/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Proliferación Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos , Proteína Relacionada con la Hormona Paratiroidea/biosíntesis , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Polimorfismo de Nucleótido Simple , Receptores Sensibles al Calcio/genética , Trasplante Heterólogo
20.
Cardiovasc Res ; 84(3): 387-95, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19617226

RESUMEN

AIMS: Although cardiac alternans is a known predictor of lethal arrhythmias, its underlying causes remain largely undefined in disease settings. The potential role of, and mechanisms responsible for, beat-to-beat alternations in the amplitude of systolic Ca(2+) transients (Ca(2+) alternans) was investigated in a canine post-myocardial infarction (MI) model of sudden cardiac death (SCD). METHODS AND RESULTS: Post-MI dogs had preserved left ventricular (LV) function and susceptibility to ventricular fibrillation (VF) during exercise. LV wedge preparations from VF dogs were more susceptible to action potential (AP) alternans and the frequency-dependence of Ca(2+) alternans was shifted towards slower rates in myocytes isolated from VF dogs relative to controls. In both groups of cells, cytosolic Ca(2+) transients ([Ca(2+)](c)) alternated in phase with changes in diastolic Ca(2+) in sarcoplasmic reticulum ([Ca(2+)](SR)), but the dependence of [Ca(2+)](c) amplitude on [Ca(2+)](SR) was steeper in VF cells. Abnormal ryanodine receptor (RyR) function in VF cells was indicated by increased fractional Ca(2+) release for a given amplitude of Ca(2+) current and elevated diastolic RyR-mediated SR Ca(2+) leak. SR Ca(2+) uptake activity did not differ between VF and control cells. VF myocytes had an increased rate of reactive oxygen species production and increased RyR oxidation. Treatment of VF myocytes with reducing agents normalized parameters of Ca(2+) handling and shifted the threshold of Ca(2+) alternans to higher frequencies. CONCLUSION: Redox modulation of RyRs promotes generation of Ca(2+) alternans by enhancing the steepness of the Ca(2+) release-load relationship and thereby providing a substrate for post-MI arrhythmias.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Muerte Súbita Cardíaca/etiología , Modelos Animales de Enfermedad , Infarto del Miocardio/fisiopatología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Potenciales de Acción/fisiología , Animales , Muerte Súbita Cardíaca/epidemiología , Perros , Femenino , Masculino , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxidación-Reducción , Técnicas de Placa-Clamp , Factores de Riesgo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Fibrilación Ventricular/epidemiología , Fibrilación Ventricular/patología , Fibrilación Ventricular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA