Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751557

RESUMEN

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Asunto(s)
Coinfección , Ostreidae , Animales , Humanos , Ecosistema , Bioensayo , Conducta Cooperativa
2.
Proc Natl Acad Sci U S A ; 119(45): e2212616119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322756

RESUMEN

Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.


Asunto(s)
Pinctada , Animales , Carbonato de Calcio/química , Moluscos , Rayos X
3.
BMC Biol ; 20(1): 167, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35879753

RESUMEN

BACKGROUND: Chimeras are genetically mixed entities resulting from the fusion of two or more conspecifics. This phenomenon is widely distributed in nature and documented in a variety of animal and plant phyla. In corals, chimerism initiates at early ontogenic states (larvae to young spat) and results from the fusion between two or more closely settled conspecifics. When compared to genetically homogenous colonies (non-chimeras), the literature has listed ecological and evolutionary benefits for traits at the chimeric state, further positioning coral chimerism as an evolutionary rescue instrument. However, the molecular mechanisms underlying this suggestion remain unknown. RESULTS: To address this question, we developed field monitoring and multi-omics approaches to compare the responses of chimeric and non-chimeric colonies acclimated for 1 year at 10-m depth or exposed to a stressful environmental change (translocation from 10- to 2-m depth for 48h). We showed that chimerism in the stony coral Stylophora pistillata is associated with higher survival over a 1-year period. Transcriptomic analyses showed that chimeras lose transcriptomic plasticity and constitutively express at higher level (frontload) genes responsive to stress. This frontloading may prepare the colony to face at any time environmental stresses which explain its higher robustness. CONCLUSIONS: These results show that chimeras are environmentally robust entities with an enhanced ability to cope with environmental stress. Results further document the potential usefulness of chimeras as a novel reef restoration tool to enhance coral adaptability to environmental change, and confirm that coral chimerism can be an evolutionary rescue instrument.


Asunto(s)
Antozoos , Aclimatación , Animales , Antozoos/genética , Quimera , Larva/genética , Estrés Fisiológico/genética
4.
J Struct Biol ; 214(4): 107909, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309120

RESUMEN

In living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds. To this end, we target the ν1 calcium carbonate vibration mode and produce spatially and spectroscopically resolved images of the shell border of a mollusk shell, the Pinctada margaritifera pearl oyster. A novel approach is further presented to efficiently compare the amount of amorphous carbonate with respect to its crystalline counterpart. Finally, the whole microscopy method is used to image in vivo the shell border and demonstrate the feasibility and the reproducibility of the technique. These findings open chemical imaging perspectives for the study of biogenic and bio-inspired crystals.


Asunto(s)
Carbonatos , Microscopía , Reproducibilidad de los Resultados , Carbonato de Calcio
5.
Genetica ; 150(5): 247-262, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36083388

RESUMEN

Correctly delimiting species and populations is a prerequisite for studies of connectivity, adaptation and conservation. Genomic data are particularly useful to test species differentiation for organisms with few informative morphological characters or low discrimination of cytoplasmic markers, as in Scleractinians. Here we applied Restriction site Associated DNA sequencing (RAD-sequencing) to the study of species differentiation and genetic structure in populations of Pocillopora spp. from Oman and French Polynesia, with the objectives to test species hypotheses, and to study the genetic structure among sampling sites within species. We focused here on coral colonies morphologically similar to P. acuta (damicornis type ß). We tested the impact of different filtering strategies on the stability of the results. The main genetic differentiation was observed between samples from Oman and French Polynesia. These samples corresponded to different previously defined primary species hypotheses (PSH), i.e., PSHs 12 and 13 in Oman, and PSH 5 in French Polynesia. In Oman, we did not observe any clear differentiation between the two putative species PSH 12 and 13, nor between sampling sites. In French Polynesia, where a single species hypothesis was studied, there was no differentiation between sites. Our analyses allowed the identification of clonal lineages in Oman and French Polynesia. The impact of clonality on genetic diversity is discussed in light of individual-based simulations.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Estructuras Genéticas , Metagenómica , Análisis de Secuencia de ADN , Especificidad de la Especie
6.
Proc Natl Acad Sci U S A ; 116(28): 14238-14247, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221761

RESUMEN

Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Ostreidae/microbiología , Vibriosis/genética , Vibrio/genética , Animales , Citoplasma/genética , Citoplasma/microbiología , Hemocitos/microbiología , Fagocitosis/genética , Especificidad de la Especie , Vibrio/patogenicidad , Vibriosis/patología
7.
BMC Genomics ; 21(1): 63, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959106

RESUMEN

BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). RESULTS: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. CONCLUSIONS: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.


Asunto(s)
Crassostrea/genética , Crassostrea/microbiología , Animales , Crassostrea/inmunología , Crassostrea/metabolismo , Genes , RNA-Seq , Estrés Fisiológico/genética , Transcriptoma
8.
Glob Chang Biol ; 26(3): 1271-1284, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692206

RESUMEN

Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams' responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts' photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate.


Asunto(s)
Antozoos , Dinoflagelados , Aclimatación , Animales , Arrecifes de Coral , Polinesia , Simbiosis , Temperatura
9.
J Exp Biol ; 223(Pt 20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32816959

RESUMEN

Of all environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to pathogens in ectothermic animals. In France, massive mortality of Pacific oysters, Crassostrea gigas, caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to the apoptotic process, synaptic signaling and protein processes at 29°C. Concomitantly, the expression of genes associated with catabolism, metabolite transport, macromolecule synthesis and cell growth remained low from the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate host-pathogen interactions.


Asunto(s)
Crassostrea , Herpesviridae , Animales , Crassostrea/genética , Francia , Herpesviridae/genética , Temperatura , Transcriptoma
10.
J Exp Biol ; 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34005719

RESUMEN

Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.

11.
Chemosphere ; 346: 140565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303385

RESUMEN

The pollution of seawater by both biotic (bacteria, viruses) and abiotic contaminants (biocides, pharmaceutical residues) frequently leads to economic losses in aquaculture activities mostly mortality events caused by microbial infection. Advanced Oxidation Processes (AOPs) such as heterogeneous photocatalysis allow the removal of all organic contaminants present in water and therefore could reduce production losses in land-based farms. Oysters in land-based farms such as hatcheries and nurseries suffer from a large number of mortality events, resulting in significant losses. If photocatalysis has been widely studied for the decontamination, its application for disinfection is still overlooked, especially on seawater for viruses. We therefore studied seawater disinfection using the photocatalysis (UV365/TiO2) method in the context of Pacific oyster mortality syndrome (POMS). POMS has been defined as a polymicrobial disease involving an initial viral infection with Ostreid Herpes Virus 1, accompanied by multiple bacterial infections. We investigated the impact of treatment on Vibrio harveyi, a unique opportunistic pathogenic bacterium, and on a complex microbial community reflecting a natural POMS event. Viral inactivation was monitored using experimental infections to determine whether viral particles were still infectious after. Changes in the total bacterial community in seawater were studied by comparing UV365/TiO2 treatment with UV365-irradiated seawater and untreated seawater. In the case of OsHV-1, a 2-h photocatalytic treatment prevents POMS disease and oyster mortality. The same treatment also inactivates 80% of viable Vibrio harveyi culture (c.a. 1.5 log). Since OsHV-1 and Vibrio harveyi are effectively inactivated without long-term destabilization of the total bacterial microbiota in the seawater, photocatalysis appears to be a relevant alternative for disinfecting seawater in land-based oyster beds.


Asunto(s)
Crassostrea , Virus ADN , Microbiota , Vibrio , Animales , Agua de Mar
12.
Environ Monit Assess ; 185(6): 5031-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23054287

RESUMEN

Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.


Asunto(s)
Antozoos/clasificación , Arrecifes de Coral , Respuesta al Choque Térmico , Adaptación Fisiológica , Animales , Antozoos/crecimiento & desarrollo , Biodiversidad , Monitoreo del Ambiente , Análisis Espacial
13.
Evol Appl ; 16(2): 408-427, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36793698

RESUMEN

For hundreds of years, the color diversity of Mollusca shells has been a topic of interest for humanity. However, the genetic control underlying color expression is still poorly understood in mollusks. The pearl oyster Pinctada margaritifera is increasingly becoming a biological model to study this process due to its ability to produce a large range of colors. Previous breeding experiments demonstrated that color phenotypes were partly under genetic control, and while a few genes were found in comparative transcriptomics and epigenetic experiments, genetic variants associated with the phenotypes have not yet been investigated. Here, we used a pooled-sequencing approach on 172 individuals to investigate color-associated variants on three color phenotypes of economic interest for pearl farming, in three wild and one hatchery populations. While our results uncovered SNPs targeting pigment-related genes already identified in previous studies, such as PBGD, tyrosinases, GST, or FECH, we also identified new color-related genes occurring in the same pathways, like CYP4F8, CYP3A4, and CYP2R1. Moreover, we identified new genes involved in novel pathways unknown to be involved in shell coloration for P. margaritifera, like the carotenoid pathway, BCO1. These findings are essential to possibly implement future breeding programs focused on individual selection for specific color production in pearl oysters and improve the footprint of perliculture on the Polynesian lagoon by producing less but with a better quality.

14.
Sci Adv ; 9(36): eadh8990, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683000

RESUMEN

Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Ostreidae , Animales , Aclimatación , Epigénesis Genética , Síndrome , Variación Genética
15.
J Biol Chem ; 286(25): 22688-98, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21536670

RESUMEN

Scleractinian corals are the most basal eumetazoan taxon and provide the biological and physical framework for coral reefs, which are among the most diverse of all ecosystems. Over the past three decades and coincident with climate change, these phototrophic symbiotic organisms have been subject to increasingly frequent and severe diseases, which are now geographically widespread and a major threat to these ecosystems. Although coral immunity has been the subject of increasing study, the available information remains fragmentary, especially with respect to coral antimicrobial responses. In this study, we characterized damicornin from Pocillopora damicornis, the first scleractinian antimicrobial peptide (AMP) to be reported. We found that its precursor has a segmented organization comprising a signal peptide, an acidic proregion, and the C-terminal AMP. The 40-residue AMP is cationic, C-terminally amidated, and characterized by the presence of six cysteine molecules joined by three intramolecular disulfide bridges. Its cysteine array is common to another AMP and toxins from cnidarians; this suggests a common ancestor, as has been proposed for AMPs and toxins from arthropods. Damicornin was active in vitro against Gram-positive bacteria and the fungus Fusarium oxysporum. Damicornin expression was studied using a combination of immunohistochemistry, reverse phase HPLC, and quantitative RT-PCR. Our data show that damicornin is constitutively transcribed in ectodermal granular cells, where it is stored, and further released in response to nonpathogenic immune challenge. Damicornin gene expression was repressed by the coral pathogen Vibrio coralliilyticus. This is the first evidence of AMP gene repression in a host-Vibrio interaction.


Asunto(s)
Antozoos/inmunología , Antozoos/microbiología , Inmunidad Innata , Vibrio/fisiología , Secuencia de Aminoácidos , Animales , Antozoos/genética , Antozoos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Toxinas Bacterianas/química , Secuencia de Bases , Disulfuros/química , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Transporte de Proteínas , Vibrio/efectos de los fármacos , Vibrio/patogenicidad
16.
Acta Biomater ; 142: 194-207, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041900

RESUMEN

Biomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights. In these calcite units, we observed ring-like structural features correlated with a lack of calcite and an increase of amorphous calcium carbonate and proteins contents. The rings also correspond to a larger crystalline disorder and a larger strain level. Based on these observations, we propose a temporal biomineralization cycle, initiated by the production of an amorphous precursor layer, which further crystallizes with a transition front progressing radially from the unit centre, while the organics are expelled towards the prism edge. Simultaneously, along the shell thickness, the growth occurs following a layer-by-layer mode. These findings open biomimetic perspectives for the design of refined crystalline materials. STATEMENT OF SIGNIFICANCE: Calcareous biominerals are amongst the most present forms of biominerals. They exhibit astonishing structural, optical and mechanical properties while being formed at ambient synthesis conditions from ubiquitous ions, motivating the deep understanding of biomineralization. Here, we unveil the first formation steps involved in the biomineralization cycle of prismatic units of two bivalve species by applying a new multi-modal non-destructive characterization approach, sensitive to chemical and crystalline properties. The observations of structural features in mineralized units of different ages allowed the derivation of a temporal sequence for prism biomineralization, involving an amorphous precursor, a radial crystallisation front and a layer-by-layer sequence. Beyond these chemical and physical findings, the herein introduced multi-modal approach is highly relevant to other biominerals and bio-inspired studies.


Asunto(s)
Bivalvos , Pinctada , Animales , Carbonato de Calcio/química , Cristalización , Proteínas
17.
Microbiome ; 10(1): 85, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659369

RESUMEN

BACKGROUND: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS: We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.


Asunto(s)
Crassostrea , Microbiota , Animales , Acuicultura , Crassostrea/genética , Sistema Inmunológico , Transcriptoma
18.
J Exp Biol ; 214(Pt 9): 1533-45, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21490261

RESUMEN

As the effects of climate change have become increasingly visible over the past three decades, coral reefs have suffered from a number of natural and anthropogenic disturbances that have caused a critical decline in coral populations. Among these disturbances are coral diseases, which have appeared with increasing frequency and severity, often in correlation with increases in water temperature. Although the crucial role played by Vibrio species in coral disease has been widely documented, the scientific community does not yet fully understand the infection process of Vibrio or its impact on coral physiology and immunology. Here, we investigated the physiological and transcriptomic responses of a major reef-building coral, Pocillopora damicornis, when exposed to a specific pathogen (Vibrio coralliilyticus) under virulent (increasing water temperature) and non-virulent (constant low temperature) conditions. The infection process was examined by electron microscopy and quantitative reverse-transcription PCR, and coral health was monitored by visual observations and measurements of zooxanthellar density. The results obtained suggest that coral tissue invasion occurs upon increasing water temperature only. Transcriptomic variations were investigated using a suppression-subtractive-hybridization approach, and the expression levels of six candidate immune-related genes were examined during bacterial exposure. These genes correspond to three lectin-like molecules putatively involved in the recognition of pathogens, two metal-binding proteins putatively involved in antibacterial response and one cystein protease inhibitor. The transcription patterns of these selected genes provide new insights into the responses of coral colonies to virulent versus non-virulent bacteria.


Asunto(s)
Antozoos/microbiología , Antozoos/fisiología , Estrés Fisiológico , Vibrio/fisiología , Animales , Antozoos/genética , Antozoos/ultraestructura , Secuencia de Bases , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Biblioteca de Genes , Interacciones Huésped-Patógeno/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Factores de Tiempo , Vibrio/genética , Vibriosis
19.
Front Genet ; 12: 630290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815466

RESUMEN

Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.

20.
Genes (Basel) ; 12(3)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804186

RESUMEN

The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera-the species displaying the broadest range of colors. Three inner shell colors were investigated-red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper-Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.


Asunto(s)
Pigmentación/genética , Pinctada/genética , Animales , Bilirrubina/genética , Biliverdina/genética , Color , Perfilación de la Expresión Génica/métodos , Hemo/genética , Melaninas/genética , RNA-Seq/métodos , Transcriptoma/genética , Uroporfirinas/genética , Vitamina B 12/genética , Xantina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA