RESUMEN
A number of putative adaptations for bipedalism have been identified in the hominin spine. However, it is possible that some have been overlooked because only a few studies have used 3D and these studies have focused on cervical vertebrae. With this in mind, we used geometric morphometric techniques to compare the 3D shapes of three thoracic and two lumbar vertebrae of Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. The study had two goals. One was to confirm the existence of traits previously reported to distinguish the thoracic and lumbar vertebrae of H. sapiens from those of the great apes. The other was to, if possible, identify hitherto undescribed traits that differentiate H. sapiens thoracic and lumbar vertebrae from those of the great apes. Both goals were accomplished. Our analyses not only substantiated a number of traits that have previously been discussed in the literature but also identified four traits that have not been described before: (1) dorsoventrally shorter pedicles in the upper thoracic vertebrae; (2) dorsoventrally longer laminae in all five of the vertebrae examined; (3) longer transverse processes in the upper thoracic vertebrae; and (4) craniocaudally 'pinched' spinous process tips in all of the vertebrae examined. A review of the biomechanical literature suggests that most of the traits highlighted in our analyses can be plausibly linked to bipedalism, including three of the four new ones. As such, the present study not only sheds further light on the differences between the spines of H. sapiens and great apes but also enhances our understanding of how the shift to bipedalism affected the hominin vertebral column.
Asunto(s)
Adaptación Biológica , Vértebras Lumbares/anatomía & histología , Vértebras Torácicas/anatomía & histología , Caminata , HumanosRESUMEN
Domestic animals are often described as paedomorphic, meaning that they retain juvenile characteristics into adulthood. Through a three-dimensional landmark-based geometric morphometric analysis of cranial morphology at three growth stages, we demonstrate that wild boar (n = 138) and domestic pigs (n = 106) (Sus scrofa) follow distinct ontogenetic trajectories. With the exception of the size ratio between facial and neurocranial regions, paedomorphism does not appear to be the primary pattern describing the observed differences between wild and domestic pig cranial morphologies. The cranial phenotype of domestic pigs instead involves developmental innovation during domestication. This result questions the long-standing assumption that domestic animal phenotypes are paedomorphic forms of their wild counterparts.
Asunto(s)
Cráneo , Adolescente , Animales , Animales Domésticos , Humanos , Fenotipo , Sus scrofa , PorcinosRESUMEN
BACKGROUND: Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl's nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism. RESULTS: The study employed geometric morphometric techniques. Two-dimensional landmarks were used to capture the shapes of the superior aspect of the body and posterior elements of the last thoracic and first lumbar vertebrae of chimpanzees, orangutans, and humans with and without Schmorl's nodes. These data were subjected to multivariate statistical analyses. Canonical Variates Analysis indicated that the last thoracic and first lumbar vertebrae of healthy humans, chimpanzees, and orangutans can be distinguished from each other (p<0.028), but vertebrae of pathological humans and chimpanzees cannot (p>0.4590). The Procrustes distance between pathological humans and chimpanzees was found to be smaller than the one between pathological and healthy humans. This was the case for both vertebrae. Pair-wise MANOVAs of Principal Component scores for both the thoracic and lumbar vertebrae found significant differences between all pairs of taxa (p<0.029), except pathological humans vs chimpanzees (p>0.367). Together, these results suggest that human vertebrae with Schmorl's nodes are closer in shape to chimpanzee vertebrae than are healthy human vertebrae. CONCLUSIONS: The results support the hypothesis that intervertebral disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within H. sapiens and therefore are less well adapted for bipedalism. This finding not only has clinical implications but also illustrates the benefits of bringing the tools of evolutionary biology to bear on problems in medicine and public health.
Asunto(s)
Disco Intervertebral/metabolismo , Animales , Evolución Biológica , Hominidae , Humanos , Disco Intervertebral/patología , Desplazamiento del Disco Intervertebral/patología , Pan troglodytes/anatomía & histología , Pongo/anatomía & histología , Columna Vertebral/anatomía & histología , Columna Vertebral/patologíaRESUMEN
BACKGROUND: Identifying the phenotypic responses to domestication remains a long-standing and important question for researchers studying its early history. The great diversity in domestic animals and plants that exists today bears testament to the profound changes that domestication has induced in their ancestral wild forms over the last millennia. Domestication is a complex evolutionary process in which wild organisms are moved to new anthropogenic environments. Although modern genetics are significantly improving our understanding of domestication and breed formation, little is still known about the associated morphological changes linked to the process itself. In order to explore phenotypic variation induced by different levels of human control, we analysed the diversity of dental size, shape and allometry in modern free-living and captive wild, wild x domestic hybrid, domestic and insular Sus scrofa populations. RESULTS: We show that domestication has created completely new dental phenotypes not found in wild boar (although the amount of variation amongst domestic pigs does not exceed that found in the wild). Wild boar tooth shape also appears to be biogeographically structured, likely the result of post-glacial recolonisation history. Furthermore, distinct dental phenotypes were also observed among domestic breeds, probably the result of differing types and intensity of past and present husbandry practices. Captivity also appears to impact tooth shape. Wild x domestic hybrids possess second molars that are strictly intermediate in shape between wild boar and domestic pigs (third molars, however, showing greater shape similarity with wild boar) while their size is more similar to domestic pigs. The dental phenotypes of insular Sus scrofa populations found on Corsica and Sardinia today (originally introduced by Neolithic settlers to the islands) can be explained either by feralization of the original introduced domestic swine or that the founding population maintained a wild boar phenotype through time. CONCLUSIONS: Domestication has driven significant phenotypic diversification in Sus scrofa. Captivity (environmental control), hybridization (genome admixture), and introduction to islands all correspond to differing levels of human control and may be considered different stages of the domestication process. The relatively well-known genetic evolutionary history of pigs shows a similar complexity at the phenotypic level.
Asunto(s)
Evolución Molecular , Sus scrofa/genética , Diente/anatomía & histología , Animales , Animales Domésticos , Variación Genética , Humanos , Hibridación Genética , Fenotipo , Sus scrofa/fisiología , Diente/fisiologíaRESUMEN
Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ~8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.
Asunto(s)
ADN Mitocondrial/genética , Diente Molar/anatomía & histología , Sus scrofa/genética , Distribución Animal , Animales , Animales Domésticos/genética , Asia , Europa (Continente) , Humanos , Filogeografía , Análisis de Secuencia de ADN , Porcinos/genéticaRESUMEN
Schmorl's nodes are the result of herniations of the nucleus pulposus into the adjacent vertebral body and are commonly identified in both clinical and archaeological contexts. The current study aims to identify aspects of vertebral shape that correlate with Schmorl's nodes. Two-dimensional statistical shape analysis was performed on digital images of the lower thoracic spine (T10-T12) of adult skeletons from the late medieval skeletal assemblages from Fishergate House, York, St. Mary Graces and East Smithfield Black Death cemeteries, London, and postmedieval Chelsea Old Church, London. Schmorl's nodes were scored on the basis of their location, depth, and size. Results indicate that there is a correlation between the shape of the posterior margin of the vertebral body and pedicles and the presence of Schmorl's nodes in the lower thoracic spine. The size of the vertebral body in males was also found to correlate with the lesions. Vertebral shape differences associated with the macroscopic characteristics of Schmorl's nodes, indicating severity of the lesion, were also analyzed. The shape of the pedicles and the posterior margin of the vertebral body, along with a larger vertebral body size in males, have a strong association with both the presence and severity of Schmorl's nodes. This suggests that shape and/or size of these vertebral components are predisposing to, or resulting in, vertically directed disc herniation.
Asunto(s)
Degeneración del Disco Intervertebral/historia , Degeneración del Disco Intervertebral/patología , Desplazamiento del Disco Intervertebral/historia , Desplazamiento del Disco Intervertebral/patología , Vértebras Torácicas/anatomía & histología , Vértebras Torácicas/patología , Adulto , Análisis de Varianza , Cementerios , Femenino , Historia Medieval , Humanos , Londres , Masculino , Paleopatología , Análisis de Componente Principal , Factores SexualesRESUMEN
OBJECTIVES: This study tests differences in craniofacial size and shape attributed to demographic history and plastic responses to differing environments in the islands of Polynesia. The dispersal of modern humans into Polynesia provides a useful scenario to investigate the impact of migration on human craniofacial diversity. METHODS: Three dimensional geometric morphometric techniques are used to examine morphological diversity within Oceanic population samples. The importance of geographic and climatic variables is quantified by partial linear regression. RESULTS: The results show a homogeneous Polynesian morphology grouping in relation to neighboring regions. There is, however, considerable diversity within the Polynesian samples themselves. Natural selection due to environmental differences is not an important factor in the patterns of craniofacial diversity found in the samples. CONCLUSIONS: Historical patterns such as migration and population isolation influence patterns of craniofacial morphology within Polynesia, and our results demonstrate that morphological diversity can evolve in populations isolated for a relatively short period of time.
Asunto(s)
Antropología Física/métodos , Evolución Biológica , Cefalometría/métodos , Cráneo/anatomía & histología , Adaptación Fisiológica , Adulto , Asia Sudoriental , Ambiente , Femenino , Variación Genética , Geografía , Humanos , Masculino , Melanesia , Modelos Biológicos , Filogenia , Polinesia , Análisis de Componente Principal , Análisis de RegresiónRESUMEN
Adaptation to climate occupies a central position in biological anthropology. The demonstrable relationship between temperature and morphology in extant primates (including humans) forms the basis of the interpretation of the Pleistocene hominin Homo neanderthalensis as a cold-adapted species. There are contradictory signals, however, in the pattern of primate craniofacial changes associated with climatic conditions. To determine the direction and extent of craniofacial change associated with temperature, and to understand the proximate mechanisms underlying cold adaptations in vertebrates in general, dry crania from previous experiments on cold- and warm-reared rats were investigated using computed tomography scanning and three-dimensional digitization of cranial landmarks. Aspects of internal and external cranial morphology were compared using standard statistical and geometric morphometric techniques. The results suggest that the developmental response to cold stress produces subtle but significant changes in facial shape, and a relative decrease in the volume of the maxillary sinuses (and nasal cavity), both of which are independent of the size of the skull or postcranium. These changes are consistent with comparative studies of temperate climate primates, but contradict previous interpretations of cranial morphology of Pleistocene Hominini.
Asunto(s)
Adaptación Biológica , Frío , Ratas , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Animales , Cefalometría , Cara/anatomía & histología , Hominidae/anatomía & histología , Análisis de Componente Principal , Especificidad de la EspecieRESUMEN
Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large 'domestic shape' specimens were present from the outset of the Romanian Neolithic (6100-5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory.
Asunto(s)
Evolución Biológica , ADN/genética , Fósiles , Hibridación Genética , Paleontología/métodos , Sus scrofa/anatomía & histología , Sus scrofa/genética , Animales , Pesos y Medidas Corporales , ADN/historia , Historia Antigua , Humanos , Rumanía , Diente/anatomía & histología , Diente/químicaRESUMEN
The identification of biological race (ancestry) in skeletal material is an important aspect of forensic investigations. While techniques for race determination are well established for adult skeletons, identification of race in sub-adult specimens has not been widely addressed. The present study investigates racial differences in the mandibular morphology of sub-adult specimens using geometric morphometric analyses. One hundred and seventy-four mandibles from five morphologically distinct samples were digitized and subjected to general Procrustes analysis. Results showed significant morphological differences between the samples and obtained cross-validation results of over 70% accuracy in identification of unknown individuals using the complete mandible. It is suggested that these techniques could provide a method for the identification of race in sub-adult individuals.