Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proteomics ; 15(22): 3901-4, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26314381

RESUMEN

Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative agent of Chagas' disease, an illness that affects 20% of Latin America population. The obligatory course of the parasite in the vector digestive tract has made it an important target for investigation in order to control the parasite transmission and thus interrupt its biological cycle in the insect vector. Therefore, an insight into the vector midgut physiology is valuable for insect control as well as to provide potential novel targets for drugs and vaccines development and thus disease treatment. In this study, the first 2DE map of R. prolixus anterior midgut is described. Proteins were separated by 2DE and analyzed by nano-LC MS/MS. The results yielded 489 proteins from 475 spots. These proteins were classified into 28 functional groups and their physiological roles in the insect midgut are discussed. All MS data have been deposited in the ProteomeXchange with identifiers PXD001488 and PXD001489 (http://proteomecentral.proteomexchange.org/dataset/PXD001488, http://proteomecentral.proteomexchange.org/dataset/PXD001489).


Asunto(s)
Proteínas de Insectos/metabolismo , Proteoma , Rhodnius/metabolismo , Animales , Bases de Datos de Proteínas , Sistema Digestivo/metabolismo , Femenino
2.
Cells ; 11(9)2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563760

RESUMEN

Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host-parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission.


Asunto(s)
Enfermedad de Chagas , Parásitos , Rhodnius , Trypanosoma cruzi , Animales , Hemolinfa , Inmunidad , Insectos Vectores/parasitología , Proteómica , Rhodnius/parasitología
3.
Ticks Tick Borne Dis ; 13(3): 101910, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35121230

RESUMEN

The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.


Asunto(s)
Ixodidae , Neuropéptidos , Rhipicephalus , Animales , Femenino , Ixodidae/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Péptidos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Transcriptoma
4.
Nat Commun ; 13(1): 5445, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114198

RESUMEN

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Moscas Tse-Tse , Adenilil Ciclasas/metabolismo , Animales , AMP Cíclico , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología
5.
Microorganisms ; 9(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920371

RESUMEN

Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine-trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.

6.
Sci Rep ; 10(1): 18296, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106528

RESUMEN

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Rhipicephalus/fisiología , Animales , Bovinos , Femenino , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de Órganos , Ovario/química , Embarazo , Rhipicephalus/genética , Saliva/química , Análisis de Secuencia de ARN
7.
PLoS Negl Trop Dis ; 9(10): e0004186, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26496442

RESUMEN

BACKGROUND: Here we report the monitoring of the digestive tract colonization of Rhodnius prolixus by Trypanosoma cruzi using an accurate determination of the parasite load by qPCR coupled with fluorescence and bioluminescence imaging (BLI). These complementary methods revealed critical steps necessary for the parasite population to colonize the insect gut and establish vector infection. METHODOLOGY/PRINCIPAL FINDINGS: qPCR analysis of the parasite load in the insect gut showed several limitations due mainly to the presence of digestive-derived products that are thought to degrade DNA and inhibit further the PCR reaction. We developed a real-time PCR strategy targeting the T. cruzi repetitive satellite DNA sequence using as internal standard for normalization, an exogenous heterologous DNA spiked into insect samples extract, to precisely quantify the parasite load in each segment of the insect gut (anterior midgut, AM, posterior midgut, PM, and hindgut, H). Using combined fluorescence microscopy and BLI imaging as well as qPCR analysis, we showed that during their journey through the insect digestive tract, most of the parasites are lysed in the AM during the first 24 hours independently of the gut microbiota. During this short period, live parasites move through the PM to establish the onset of infection. At days 3-4 post-infection (p.i.), the parasite population begins to colonize the H to reach a climax at day 7 p.i., which is maintained during the next two weeks. Remarkably, the fluctuation of the parasite number in H remains relatively stable over the two weeks after refeeding, while the populations residing in the AM and PM increases slightly and probably constitutes the reservoirs of dividing epimastigotes. CONCLUSIONS/SIGNIFICANCE: These data show that a tuned dynamic control of the population operates in the insect gut to maintain an equilibrium between non-dividing infective trypomastigote forms and dividing epimastigote forms of the parasite, which is crucial for vector competence.


Asunto(s)
Mediciones Luminiscentes , Imagen Óptica , Carga de Parásitos , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhodnius/parasitología , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/aislamiento & purificación , Animales , Femenino , Tracto Gastrointestinal/parasitología , Trypanosoma cruzi/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA