Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(12): 126401, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027842

RESUMEN

The recently discovered layered kagome metals of composition AV_{3}Sb_{5} (A=K, Rb, Cs) exhibit a complex interplay among superconductivity, charge density wave order, topologically nontrivial electronic band structure and geometrical frustration. Here, we probe the electronic band structure underlying these exotic correlated electronic states in CsV_{3}Sb_{5} with quantum oscillation measurements in pulsed fields up to 86 T. The high-field data reveal a sequence of magnetic breakdown orbits that allows the construction of a model for the folded Fermi surface of CsV_{3}Sb_{5}. The dominant features are large triangular Fermi surface sheets that cover almost half the folded Brillouin zone. These sheets have not yet been detected in angle resolved photoemission spectroscopy and display pronounced nesting. The Berry phases of the electron orbits have been deduced from Landau level fan diagrams near the quantum limit without the need for extrapolations, thereby unambiguously establishing the nontrivial topological character of several electron bands in this kagome lattice superconductor.

2.
Nano Lett ; 22(1): 65-72, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914397

RESUMEN

Quantum materials harbor a cornucopia of exotic transport phenomena challenging our understanding of condensed matter. Among these, a giant, nonsaturating linear magnetoresistance (MR) has been reported in various systems, from Weyl semimetals to topological insulators. Its origin is often ascribed to unusual band structure effects, but it may also be caused by extrinsic sample disorder. Here, we report a very large linear MR in a SrTiO3 two-dimensional electron gas and, by combining transport measurements with electron spectromicroscopy, show that it is caused by nanoscale inhomogeneities that are self-organized during sample growth. Our data also reveal semiclassical Sondheimer oscillations arising from interferences between helicoidal electron trajectories, from which we determine the 2DEG thickness. Our results bring insight into the origin of linear MR in quantum materials, expand the range of functionalities of oxide 2DEGs, and suggest exciting routes to explore the interaction of linear MR with features like Rashba spin-orbit coupling.

3.
Phys Rev Lett ; 103(15): 157003, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19905661

RESUMEN

By improving the experimental conditions and extensive data accumulation, we have achieved very high precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa2Cu3O6.5. We find that the main oscillation, so far believed to be single frequency, is composed of three closely spaced frequencies. We attribute this to bilayer splitting and warping of a single quasi-2D Fermi surface, indicating that c axis coherence is restored at low temperature in underdoped cuprates. Our results do not support the existence of a larger frequency of the order of 1650 T reported recently in the same compound [S. E. Sebastian, Nature (London) 454, 200 (2008)].

4.
J Phys Condens Matter ; 28(27): 275702, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27214663

RESUMEN

de Haas-van Alphen oscillations of the organic metal κ-(ET)2Cu(SCN)2 have been measured up to 55 T at liquid helium temperatures. The Fermi surface of this charge transfer salt is a textbook example of a linear chain of orbits coupled by magnetic breakdown. Accordingly, the oscillation spectrum is composed of linear combinations of the frequencies linked to the α and magnetic breakdown-induced ß orbits. The field and temperature dependence of all the observed Fourier components, in particular the 'forbidden frequency' [Formula: see text] which cannot correspond to a classical orbit, are quantitatively accounted for by analytical calculations based on a second order development of the free energy, i.e. beyond the first order Lifshitz-Kosevich formula.

5.
Sci Adv ; 2(3): e1501657, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-27034989

RESUMEN

Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.


Asunto(s)
Electrones , Superconductividad , Temperatura , Cobre/química , Campos Magnéticos , Presión , Termometría , Temperatura de Transición
6.
J Phys Condens Matter ; 27(31): 315601, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26189459

RESUMEN

According to band structure calculations, the Fermi surface of the quasi-two dimensional metal θ-(ET)4ZnBr4(C6H4Cl2) illustrates the linear chain of coupled orbits model. Accordingly, de Haas-van Alphen oscillations spectra recorded in pulsed magnetic field of up to 55 T evidence many Fourier components, the frequency of which are linear combinations of the frequencies relevant to the closed α and the magnetic breakdown ß orbits. The field and temperature dependence of their amplitude are quantitatively accounted for by analytic calculations including, beyond the Lifshitz-Kosevich formula, second-order terms in damping factors due to the oscillation of the chemical potential as the magnetic field varies. Whereas these second-order terms are negligible for the orbits α, ß and 2ß-α, they are solely responsible for the 'forbidden orbit' ß-α and its harmonic and have a significant influence on Fourier components such as 2α and ß+α, yielding strongly non-Lifshitz-Kosevich behaviour in the latter case.

7.
Phys Rev Lett ; 100(18): 187005, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18518412

RESUMEN

The de Haas-van Alphen effect was observed in the underdoped cuprate YBa2Cu3O6.5 via a torque technique in pulsed magnetic fields up to 59 T. Above a field of approximately 30 T the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.76 times the free electron mass, in excellent agreement with previously observed Shubnikov-de Haas oscillations. The oscillations obey the standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic observation of quantum oscillations confirms the existence of a well-defined, closed, and coherent, Fermi surface in the pseudogap phase of cuprates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA