Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 15(1): 28, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38199984

RESUMEN

The tumor microenvironment is a complex ecosystem that plays a critical role in cancer progression and treatment response. Recently, extracellular amyloid fibrils have emerged as novel components of the tumor microenvironment; however, their function remains elusive. In this study, we establish a direct connection between the presence of amyloid fibrils in the secretome and the activation of YAP, a transcriptional co-activator involved in cancer proliferation and drug resistance. Furthermore, we uncover a shared mechano-signaling mechanism triggered by amyloid fibrils in both melanoma and pancreatic ductal adenocarcinoma cells. Our findings highlight the crucial role of the glycocalyx protein Agrin which binds to extracellular amyloid fibrils and acts as a necessary factor in driving amyloid-dependent YAP activation. Additionally, we reveal the involvement of the HIPPO pathway core kinase LATS1 in this signaling cascade. Finally, we demonstrate that extracellular amyloid fibrils enhance cancer cell migration and invasion. In conclusion, our research expands our knowledge of the tumor microenvironment by uncovering the role of extracellular amyloid fibrils in driving mechano-signaling and YAP activation. This knowledge opens up new avenues for developing innovative strategies to modulate YAP activation and mitigate its detrimental effects during cancer progression.


Asunto(s)
Melanoma , Neoplasias Pancreáticas , Humanos , Amiloide , Ecosistema , Transducción de Señal , Neoplasias Pancreáticas/genética , Microambiente Tumoral
2.
Biomolecules ; 14(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38254629

RESUMEN

Vascular calcification (VC) is an age-related complication characterised by calcium-phosphate deposition in the arterial wall driven by the osteogenic transformation of vascular smooth muscle cells (VSMCs). The JAK-STAT pathway is an emerging target in inflammation. Considering the relationship between VC and inflammation, we investigated the role of JAK-STAT signalling during VSMC calcification. Human aortic smooth muscle cells (HASMCs) were cultured in high-inorganic phosphate (Pi) medium for up to 7 days; calcium deposition was determined via Alizarin staining and colorimetric assay. Inflammatory factor secretion was evaluated via ELISA and JAK-STAT members' activation using Western blot or immunohistochemistry on HASMCs or calcified aortas of Vitamin D-treated C57BL6/J mice, respectively. The JAK-STAT pathway was blocked by JAK Inhibitor I and Von Kossa staining was used for calcium deposits in murine aortic rings. During Pi-induced calcification, HASMCs released IL-6, IL-8, and MCP-1 and activated JAK1-JAK3 proteins and STAT1. Phospho-STAT1 was detected in murine calcified aortas. Blocking of the JAK-STAT cascade reduced HASMC proliferation and pro-inflammatory factor expression and release while increasing calcium deposition and osteogenic transcription factor RUNX2 expression. Consistently, JAK-STAT pathway inhibition exacerbates mouse aortic ring calcification ex vivo. Intriguingly, our results suggest an alternative link between VSMC inflammation and VC.


Asunto(s)
Músculo Liso Vascular , Calcificación Vascular , Humanos , Animales , Ratones , Calcio , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Calcificación Vascular/inducido químicamente , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA