Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mutat ; 42(11): 1488-1502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34420246

RESUMEN

Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.


Asunto(s)
Neoplasias de la Mama/genética , Exones , Genes BRCA1 , Tamización de Portadores Genéticos , Predisposición Genética a la Enfermedad , Empalme del ARN , Femenino , Humanos , Intrones
2.
Nature ; 466(7302): 138-42, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596027

RESUMEN

Generally, F-box proteins are the substrate recognition subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes, which mediate the timely proteolysis of important eukaryotic regulatory proteins. Mammalian genomes encode roughly 70 F-box proteins, but only a handful have established functions. The F-box protein family obtained its name from Cyclin F (also called Fbxo1), in which the F-box motif (the approximately 40-amino-acid domain required for binding to Skp1) was first described. Cyclin F, which is encoded by an essential gene, also contains a cyclin box domain, but in contrast to most cyclins, it does not bind or activate any cyclin-dependent kinases (CDKs). However, like other cyclins, Cyclin F oscillates during the cell cycle, with protein levels peaking in G2. Despite its essential nature and status as the founding member of the F-box protein family, Cyclin F remains an orphan protein, whose functions are unknown. Starting from an unbiased screen, we identified CP110, a protein that is essential for centrosome duplication, as an interactor and substrate of Cyclin F. Using a mode of substrate binding distinct from other F-box protein-substrate pairs, CP110 and Cyclin F physically associate on the centrioles during the G2 phase of the cell cycle, and CP110 is ubiquitylated by the SCF(Cyclin F) ubiquitin ligase complex, leading to its degradation. siRNA-mediated depletion of Cyclin F in G2 induces centrosomal and mitotic abnormalities, such as multipolar spindles and asymmetric, bipolar spindles with lagging chromosomes. These phenotypes were reverted by co-silencing CP110 and were recapitulated by expressing a stable mutant of CP110 that cannot bind Cyclin F. Finally, expression of a stable CP110 mutant in cultured cells also promotes the formation of micronuclei, a hallmark of chromosome instability. We propose that SCF(Cyclin F)-mediated degradation of CP110 is required for the fidelity of mitosis and genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Ciclinas/metabolismo , Homeostasis , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Centriolos/metabolismo , Centrosoma/química , Ciclinas/química , Ciclinas/deficiencia , Ciclinas/genética , Fase G2 , Humanos , Ratones , Complejos Multiproteicos/metabolismo , Fenotipo , Unión Proteica , Proteínas Ligasas SKP Cullina F-box/metabolismo , Especificidad por Sustrato , Ubiquitinación
3.
Stem Cells ; 32(3): 649-61, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24038768

RESUMEN

Children exposed to ionizing radiation have a substantially greater breast cancer risk than adults; the mechanism for this strong age dependence is not known. Here we show that pubertal murine mammary glands exposed to sparsely or densely ionizing radiation exhibit enrichment of mammary stem cell and Notch pathways, increased mammary repopulating activity indicative of more stem cells, and propensity to develop estrogen receptor (ER) negative tumors thought to arise from stem cells. We developed a mammary lineage agent-based model (ABM) to evaluate cell inactivation, self-renewal, or dedifferentiation via epithelial-mesenchymal transition (EMT) as mechanisms by which radiation could increase stem cells. ABM rejected cell inactivation and predicted increased self-renewal would only affect juveniles while dedifferentiation could act in both juveniles and adults. To further test self-renewal versus dedifferentiation, we used the MCF10A human mammary epithelial cell line, which recapitulates ductal morphogenesis in humanized fat pads, undergoes EMT in response to radiation and transforming growth factor ß (TGFß) and contains rare stem-like cells that are Let-7c negative or express both basal and luminal cytokeratins. ABM simulation of population dynamics of double cytokeratin cells supported increased self-renewal in irradiated MCF10A treated with TGFß. Radiation-induced Notch concomitant with TGFß was necessary for increased self-renewal of Let-7c negative MCF10A cells but not for EMT, indicating that these are independent processes. Consistent with these data, irradiating adult mice did not increase mammary repopulating activity or ER-negative tumors. These studies suggest that irradiation during puberty transiently increases stem cell self-renewal, which increases susceptibility to developing ER-negative breast cancer.


Asunto(s)
Envejecimiento/patología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/efectos de la radiación , Neoplasias Mamarias Animales/patología , Radiación Ionizante , Receptores de Estrógenos/metabolismo , Células Madre/patología , Animales , Biomarcadores/metabolismo , Línea Celular , Linaje de la Célula , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Células Epiteliales/efectos de la radiación , Femenino , Humanos , Neoplasias Mamarias Animales/metabolismo , Ratones , Morfogénesis/efectos de los fármacos , Morfogénesis/efectos de la radiación , Receptores Notch/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de la radiación , Factor de Crecimiento Transformador beta/farmacología
4.
Genetics ; 178(2): 711-23, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18245357

RESUMEN

The Mre11 complex functions in double-strand break (DSB) repair, meiotic recombination, and DNA damage checkpoint pathways. Sae2 deficiency has opposing effects on the Mre11 complex. On one hand, it appears to impair Mre11 nuclease function in DNA repair and meiotic DSB processing, and on the other, Sae2 deficiency activates Mre11-complex-dependent DNA-damage-signaling via the Tel1-Mre11 complex (TM) pathway. We demonstrate that SAE2 overexpression blocks the TM pathway, suggesting that Sae2 antagonizes Mre11-complex checkpoint functions. To understand how Sae2 regulates the Mre11 complex, we screened for sae2 alleles that behaved as the null with respect to Mre11-complex checkpoint functions, but left nuclease function intact. Phenotypic characterization of these sae2 alleles suggests that Sae2 functions as a multimer and influences the substrate specificity of the Mre11 nuclease. We show that Sae2 oligomerizes independently of DNA damage and that oligomerization is required for its regulatory influence on the Mre11 nuclease and checkpoint functions.


Asunto(s)
Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Endonucleasas , Eliminación de Gen , Genes Fúngicos , Meiosis/genética , Metilmetanosulfonato/farmacología , Mutagénesis , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/efectos de la radiación , Rayos Ultravioleta
5.
Nucleic Acids Res ; 35(5): 1624-37, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17308348

RESUMEN

There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the beta-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the co-ordinated, sequential action of these enzymes.


Asunto(s)
ADN Ligasas/química , Proteínas Fúngicas/química , Antígeno Nuclear de Célula en Proliferación/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína , Proteína de Replicación C/química , Proteína de Replicación C/metabolismo
6.
Methods Enzymol ; 409: 39-52, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16793394

RESUMEN

The joining of DNA strand breaks by DNA ligases is required to seal Okazaki fragments during DNA replication and to complete almost all DNA repair pathways. In human cells, there are multiple species of DNA ligase encoded by the LIG1, LIG3, and LIG4 genes. Here we describe protocols to overexpress and purify recombinant DNA ligase I, DNA ligase IIIbeta, and DNA ligase IV/XRCC4 and the assays used to purify and distinguish between these enzymes. In addition, we describe a fluorescence-based ligation assay that can be used for high throughput screening of chemical libraries.


Asunto(s)
ADN Ligasas/aislamiento & purificación , Secuencia de Bases , Dominio Catalítico , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Sondas de ADN , Reparación del ADN , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas de Xenopus
7.
Genetics ; 171(2): 427-41, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15965249

RESUMEN

Recombination and microsatellite mutation in humans contribute to disorders including cancer and trinucleotide repeat (TNR) disease. TNR expansions in wild-type yeast may arise by flap ligation during lagging-strand replication. Here we show that overexpression of DNA ligase I (CDC9) increases the rates of TNR expansion, of TNR contraction, and of mitotic recombination. Surprisingly, this effect is observed with catalytically inactive forms of Cdc9p protein, but only if they possess a functional PCNA-binding site. Furthermore, in vitro analysis indicates that the interaction of PCNA with Cdc9p and Rad27p (Fen1) is mutually exclusive. Together our genetic and biochemical analysis suggests that, although DNA ligase I seals DNA nicks during replication, repair, and recombination, higher than normal levels can yield genetic instability by disrupting the normal interplay of PCNA with other proteins such as Fen1.


Asunto(s)
ADN Ligasas/metabolismo , Expresión Génica , Inestabilidad Genómica/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética/genética , Saccharomycetales/genética , Expansión de Repetición de Trinucleótido/genética , Acetiltransferasas , Clonación Molecular , ADN Ligasa (ATP) , ADN Ligasas/genética , Cartilla de ADN , Endonucleasas de ADN Solapado/metabolismo , Eliminación de Gen , Immunoblotting , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Dev Cell ; 16(5): 649-60, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19460342

RESUMEN

Centrosomes duplicate only once per cell cycle, but the controls that govern this process are largely unknown. We have identified Cep76, a centriolar protein that interacts with CP110. Cep76 is expressed at low levels in G1 and is induced in S and G2 phase, during which point centrioles have already commenced duplication. Interestingly, depletion of Cep76 drives the accumulation of centriolar intermediates in certain types of cancer cells. Enforced Cep76 expression specifically inhibits centriole amplification in cells undergoing multiple rounds of duplication without preventing the formation of extra procentrioles from a parental template. Furthermore, elevated levels of Cep76 do not affect normal centriole duplication. Thus, Cep76 helps limit duplication to once per cell cycle. Our findings also point to mechanistic differences between normal duplication and aberrant centriole amplification, as well as distinctions between diverse modes of amplification.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centriolos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Fase G2 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fase S
9.
Mol Cell Biol ; 29(8): 2042-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223468

RESUMEN

Human DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC. To examine the biological relevance of hLigI phosphorylation, we isolated derivatives of the hLigI-deficient cell line 46BR.1G1 that stably express mutant versions of hLigI in which four serine residues phosphorylated in vivo were replaced with either alanine or aspartic acid. The cell lines expressing the phosphorylation site mutants of hLigI exhibited a dramatic reduction in proliferation and DNA synthesis and were also hypersensitive to DNA damage. The dominant-negative effects of the hLigI phosphomutants on replication and repair are due to the activation of cellular senescence, presumably because of DNA damage arising from replication abnormalities. Thus, appropriate phosphorylation of hLigI is critical for its participation in DNA replication and repair.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteína de Replicación C/metabolismo , Línea Celular , Proliferación Celular , Senescencia Celular , ADN Ligasa (ATP) , ADN Ligasas/antagonistas & inhibidores , ADN Ligasas/genética , Humanos , Proteínas Mutantes , Fosforilación , Proteína de Replicación C/fisiología
10.
Biochemistry ; 43(16): 4781-90, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15096047

RESUMEN

Suv3 of Saccharomyces cerevisiae has been classified as a mitochondrial RNA helicase. However, the helicase domain in both yeast and human SUV3 varies considerably from the typical RNA helicase motifs. To investigate its enzymatic activities, a homogeneously purified preparation of SUV3 is required. Expression of a processed form of human SUV3 carrying an N-terminal deletion of 46 amino acids (SUV3DeltaN46) in a yeast suv3 null mutant, which otherwise fails to grow in a nonfermentable carbon source and forms petite colonies in glucose medium, rescues the null phenotype. Through a five-step chromatographic procedure, an 83 kDa SUV3DeltaN46 protein (SUV3-83) and a partially degraded 70 kDa product (SUV3-70) containing amino acids 68-685 were purified to homogeneity. Single- or double-stranded DNA and RNA stimulated ATPase activity of both proteins. SUV3-70, which retains core catalytic domains, can bind and unwind multiple duplex substrates of RNA and DNA with a 5'-3' directionality over a wide range of pH, while SUV3-83 has helicase activity at only acidic pH. ATP, but not nonhydrolyzable ATP, is essential for the unwinding activity, suggesting the requirement of the energy derived from ATP hydrolysis. Consistent with this notion, suv3 mutants containing alanine (A) or arginine (R) substitutions at the conserved lysine residue in the ATP binding site (K213) lost ATPase activity and also failed to unwind the substrates. Importantly, circular dichroism (CD) spectral analysis showed that SUV3-83, at pH 5.0, adopts a conformation similar to that of SUV3-70, suggesting a conformational change in SUV3-83 is required for its helicase activity. The physiological relevance of the multiple-substrate helicase activity of human SUV3 is discussed.


Asunto(s)
Procesamiento Proteico-Postraduccional , ARN Helicasas/aislamiento & purificación , ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , ARN Helicasas DEAD-box , Activación Enzimática , Eliminación de Gen , Humanos , Concentración de Iones de Hidrógeno , Ácidos Nucleicos Heterodúplex/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional/genética , ARN Helicasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología Estructural de Proteína , Especificidad por Sustrato/genética
11.
J Biol Chem ; 279(53): 55196-201, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15502161

RESUMEN

The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.


Asunto(s)
ADN Ligasas/fisiología , ADN/fisiología , Antígeno Nuclear de Célula en Proliferación/fisiología , Transcripción Genética , Sitios de Unión , Biotina/farmacología , Cromatografía , ADN/química , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteína de Replicación C , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA