Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768217

RESUMEN

Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.


Asunto(s)
Ataxina-2 , Proteínas de Drosophila , Drosophila melanogaster , ARN Mensajero , Ribonucleoproteínas , Ataxina-2/genética , Ataxina-2/metabolismo , Animales , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/genética , Animales Modificados Genéticamente , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN
2.
Cell ; 147(3): 690-703, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22036573

RESUMEN

Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mapeo de Interacción de Proteínas , Animales , Proteínas de Drosophila/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Proteínas SNARE/metabolismo
3.
J Neurosci ; 42(14): 2930-2941, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35232763

RESUMEN

Habituated animals retain a latent capacity for robust engagement with familiar stimuli. In most instances, the ability to override habituation is best explained by postulating that habituation arises from the potentiation of inhibitory inputs onto stimulus-encoding assemblies and that habituation override occurs through disinhibition. Previous work has shown that inhibitory plasticity contributes to specific forms of olfactory and gustatory habituation in Drosophila Here, we analyze how exposure to a novel stimulus causes override of gustatory (proboscis extension reflex; PER) habituation. While brief sucrose contact with tarsal hairs causes naive Drosophila to extend their proboscis, persistent exposure reduces PER to subsequent sucrose stimuli. We show that in so habituated animals, either brief exposure of the proboscis to yeast or direct thermogenetic activation of sensory neurons restores PER response to tarsal sucrose stimulation. Similar override of PER habituation can also be induced by brief thermogenetic activation of a population of tyrosine hydroxylase (TH)-positive neurons, a subset of which send projections to the subesophageal zone (SEZ). Significantly, sensory-neuron induced habituation override requires transmitter release from these TH-positive cells. Treatments that cause override specifically influence the habituated state, with no effect on the naive sucrose response across a range of concentrations. Taken together with other findings, these observations in female flies are consistent with a model in which novel taste stimuli trigger activity in dopaminergic neurons which, directly or indirectly, inhibit GABAergic cells that drive PER habituation. The implications of these findings for general mechanisms of attentional and sensory override of habituation are discussed.SIGNIFICANCE STATEMENT Habituation can be overcome when a new context requires an enhanced response to a familiar stimulus. However, the underlying mechanisms remain incompletely understood. Previous studies have provided evidence that habituation of the sucrose-induced proboscis extension reflex (PER) in Drosophila occurs through potentiation of inhibition onto the PER pathway. This work defines controlled protocols for override of PER habituation and uses them to outline the underlying circuit mechanisms. The results presented support a model in which novel taste stimuli cause dishabituation by activating a subset of tyrosine hydroxylase (TH)-expressing neurons that inhibit GABAergic neurons whose potentiation underlies PER habituation. At a general level, these findings further highlight a central role for inhibition and disinhibition in the control of behavioral flexibility.


Asunto(s)
Drosophila , Habituación Psicofisiológica , Animales , Drosophila/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Habituación Psicofisiológica/fisiología , Células Receptoras Sensoriales/metabolismo , Sacarosa/farmacología , Tirosina 3-Monooxigenasa
4.
Cell ; 133(7): 1214-27, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585355

RESUMEN

Hedgehog (Hh) plays crucial roles in tissue-patterning and activates signaling in Patched (Ptc)-expressing cells. Paracrine signaling requires release and transport over many cell diameters away by a process that requires interaction with heparan sulfate proteoglycans (HSPGs). Here, we examine the organization of functional, fluorescently tagged variants in living cells by using optical imaging, FRET microscopy, and mutational studies guided by bioinformatics prediction. We find that cell-surface Hh forms suboptical oligomers, further concentrated in visible clusters colocalized with HSPGs. Mutation of a conserved Lys in a predicted Hh-protomer interaction interface results in an autocrine signaling-competent Hh isoform--incapable of forming dense nanoscale oligomers, interacting with HSPGs, or paracrine signaling. Thus, Hh exhibits a hierarchical organization from the nanoscale to visible clusters with distinct functions.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Membrana Celular/química , Membrana Celular/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/embriología , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(49): 24830-24839, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31748267

RESUMEN

Severe locomotor impairment is a common phenotype of neurodegenerative disorders such as Parkinson's disease (PD). Drosophila models of PD, studied for more than a decade, have helped in understanding the interaction between various genetic factors, such as parkin and PINK1, in this disease. To characterize locomotor behavioral phenotypes for these genes, fly climbing assays have been widely used. While these simple current assays for locomotor defects in Drosophila mutants measure some locomotor phenotypes well, it is possible that detection of subtle changes in behavior is important to understand the manifestation of locomotor disorders. We introduce a climbing behavior assay which provides such fine-scale behavioral data and tests this proposition for the Drosophila model. We use this inexpensive, fully automated assay to quantitatively characterize the climbing behavior at high parametric resolution in 3 contexts. First, we characterize wild-type flies and uncover a hitherto unknown sexual dimorphism in climbing behavior. Second, we study climbing behavior of heterozygous mutants of genes implicated in the fly PD model and reveal previously unreported prominent locomotor defects in some of these heterozygous fly lines. Finally, we study locomotor defects in a homozygous proprioceptory mutation (Trp-γ1 ) known to affect fine motor control in Drosophila Moreover, we identify aberrant geotactic behavior in Trp-γ1 mutants, thereby opening up a finer assay for geotaxis and its genetic basis. Our assay is therefore a cost-effective, general tool for measuring locomotor behaviors of wild-type and mutant flies in fine detail and can reveal subtle motor defects.


Asunto(s)
Técnicas de Observación Conductual/métodos , Conducta Animal/fisiología , Locomoción/genética , Enfermedad de Parkinson/genética , Propiocepción/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Enfermedad de Parkinson/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Sensibilidad y Especificidad , Caracteres Sexuales , Canales de Potencial de Receptor Transitorio/genética , Ubiquitina-Proteína Ligasas/genética
6.
Dev Dyn ; 250(1): 60-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725855

RESUMEN

BACKGROUND: Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila. RESULTS: A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays. CONCLUSIONS: Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.


Asunto(s)
Citoesqueleto/metabolismo , Drosophila/crecimiento & desarrollo , Desarrollo de Músculos , Pupa/ultraestructura , Sarcómeros/metabolismo , Animales , Drosophila/ultraestructura
7.
Blood ; 133(22): 2385-2400, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30952670

RESUMEN

Inactivation of the tumor suppressor p53 is essential for unrestrained growth of cancers. However, only 11% of hematological malignancies have mutant p53. Mechanisms that cause wild-type p53 dysfunction and promote leukemia are inadequately deciphered. The stem cell protein Asrij/OCIAD1 is misexpressed in several human hematological malignancies and implicated in the p53 pathway and DNA damage response. However, Asrij function in vertebrate hematopoiesis remains unknown. We generated the first asrij null (knockout [KO]) mice and show that they are viable and fertile with no gross abnormalities. However, by 6 months, they exhibit increased peripheral blood cell counts, splenomegaly, and an expansion of bone marrow hematopoietic stem cells (HSCs) with higher myeloid output. HSCs lacking Asrij are less quiescent and more proliferative with higher repopulation potential as observed from serial transplantation studies. However, stressing KO mice with sublethal γ irradiation or multiple injections of 5-fluorouracil results in reduced survival and rapid depletion of hematopoietic stem/progenitor cells (HSPCs) by driving them into proliferative exhaustion. Molecular and biochemical analyses revealed increased polyubiquitinated protein levels, Akt/STAT5 activation and COP9 signalosome subunit 5 (CSN5)-mediated p53 ubiquitination, and degradation in KO HSPCs. Further, we show that Asrij sequesters CSN5 via its conserved OCIA domain, thereby preventing p53 degradation. In agreement, Nutlin-3 treatment of KO mice restored p53 levels and reduced high HSPC frequencies. Thus, we provide a new mouse model resembling myeloproliferative disease and identify a posttranslational regulator of wild-type p53 essential for maintaining HSC quiescence that could be a potential target for pharmacological intervention.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , División Celular , Proteínas F-Box/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas , Trastornos Mieloproliferativos/metabolismo , Péptido Hidrolasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Complejo del Señalosoma COP9/genética , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas F-Box/genética , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Péptido Hidrolasas/genética , Proteolisis , Proteína p53 Supresora de Tumor/genética
8.
Proc Natl Acad Sci U S A ; 115(9): E2115-E2124, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440493

RESUMEN

Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.


Asunto(s)
Drosophila/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Caminata/fisiología , Algoritmos , Animales , Animales Modificados Genéticamente , Electromiografía , Procesamiento Automatizado de Datos , Extremidades/fisiología , Retroalimentación Sensorial , Inmunohistoquímica , Interneuronas/fisiología , Intrones , Masculino , Microscopía Confocal , Neurotransmisores/fisiología , Periodicidad , Fenotipo , Interferencia de ARN , Procesamiento de Señales Asistido por Computador , Grabación en Video
10.
Semin Cell Dev Biol ; 72: 56-66, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29146144

RESUMEN

Myogenesis is a highly orchestrated, complex developmental process by which cell lineages that are mesodermal in origin generate differentiated multinucleate muscle cells as a final product. Considerable insight into the process of myogenesis has been obtained for the embryonic development of the larval muscles of Drosophila. More recently, the postembryonic development of the muscles of the adult fly has become a focus of experimental investigation of myogenesis since specific flight muscles of the fly manifest remarkable similarities to vertebrate muscles in their development and organization. In this review, we catalog some of the milestones in the study of myogenesis in the large adult-specific flight muscles of Drosophila. The identification of mesoderm-derived muscle stem cell lineages, the characterization of the symmetric and asymmetric divisions through which they produce adult-specific myoblasts, the multifaceted processes of myoblast fusion, and the unexpected discovery of quiescent satellite cells that can be activated by injury are discussed. Moreover, the finding that all of these processes incorporate a plethora of signaling interactions with other myogenic cells and with niche-like neighboring tissue is considered. Finally, we briefly point out possible future developments in the area of Drosophila myogenesis that may lead to of new avenues of genetic research into the roles of muscle stem cells in development, disease and aging.


Asunto(s)
Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculos/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Modelos Genéticos , Morfogénesis/genética , Fibras Musculares Esqueléticas/metabolismo , Músculos/fisiología , Mioblastos/metabolismo , Regeneración/genética
11.
Proc Natl Acad Sci U S A ; 113(18): E2506-15, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091994

RESUMEN

Cold-sensitive phenotypes have helped us understand macromolecular assembly and biological phenomena, yet few attempts have been made to understand the basis of cold sensitivity or to elicit it by design. We report a method for rational design of cold-sensitive phenotypes. The method involves generation of partial loss-of-function mutants, at either buried or functional sites, coupled with selective overexpression strategies. The only essential input is amino acid sequence, although available structural information can be used as well. The method has been used to elicit cold-sensitive mutants of a variety of proteins, both monomeric and dimeric, and in multiple organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster This simple, yet effective technique of inducing cold sensitivity eliminates the need for complex mutations and provides a plausible molecular mechanism for eliciting cold-sensitive phenotypes.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Sensación Térmica/fisiología , Mutagénesis Sitio-Dirigida/métodos , Fenotipo
12.
Proc Natl Acad Sci U S A ; 111(1): E99-E108, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344294

RESUMEN

Fragile X mental retardation protein (FMRP) and Ataxin-2 (Atx2) are triplet expansion disease- and stress granule-associated proteins implicated in neuronal translational control and microRNA function. We show that Drosophila FMRP (dFMR1) is required for long-term olfactory habituation (LTH), a phenomenon dependent on Atx2-dependent potentiation of inhibitory transmission from local interneurons (LNs) to projection neurons (PNs) in the antennal lobe. dFMR1 is also required for LTH-associated depression of odor-evoked calcium transients in PNs. Strong transdominant genetic interactions among dFMR1, atx2, the deadbox helicase me31B, and argonaute1 (ago1) mutants, as well as coimmunoprecitation of dFMR1 with Atx2, indicate that dFMR1 and Atx2 function together in a microRNA-dependent process necessary for LTH. Consistently, PN or LN knockdown of dFMR1, Atx2, Me31B, or the miRNA-pathway protein GW182 increases expression of a Ca2+/calmodulin-dependent protein kinase II (CaMKII) translational reporter. Moreover, brain immunoprecipitates of dFMR1 and Atx2 proteins include CaMKII mRNA, indicating respective physical interactions with this mRNA. Because CaMKII is necessary for LTH, these data indicate that fragile X mental retardation protein and Atx2 act via at least one common target RNA for memory-associated long-term synaptic plasticity. The observed requirement in LNs and PNs supports an emerging view that both presynaptic and postsynaptic translation are necessary for long-term synaptic plasticity. However, whereas Atx2 is necessary for the integrity of dendritic and somatic Me31B-containing particles, dFmr1 is not. Together, these data indicate that dFmr1 and Atx2 function in long-term but not short-term memory, regulating translation of at least some common presynaptic and postsynaptic target mRNAs in the same cells.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Habituación Psicofisiológica , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Olfato/fisiología , Animales , Ataxinas , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Genes Reporteros , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Memoria a Largo Plazo , MicroARNs/metabolismo , Microscopía Fluorescente , Mutación , Plasticidad Neuronal
13.
PLoS Genet ; 9(4): e1003452, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637622

RESUMEN

Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.


Asunto(s)
Neuronas Receptoras Olfatorias , Neuronas Serotoninérgicas , Animales , Odorantes , Vías Olfatorias , Células Receptoras Sensoriales , Serotonina
14.
J Neurosci ; 33(42): 16576-85, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133261

RESUMEN

In Drosophila, short-term (STH) and long-term habituation (LTH) of olfactory avoidance behavior are believed to arise from the selective potentiation of GABAergic synapses between multiglomerular local circuit interneurons (LNs) and projection neurons in the antennal lobe. However, the underlying mechanisms remain poorly understood. Here, we show that synapsin (syn) function is necessary for STH and that syn(97)-null mutant defects in STH can be rescued by syn(+) cDNA expression solely in the LN1 subset of GABAergic local interneurons. As synapsin is a synaptic vesicle-clustering phosphoprotein, these observations identify a presynaptic mechanism for STH as well as the inhibitory interneurons in which this mechanism is deployed. Serine residues 6 and/or 533, potential kinase target sites of synapsin, are necessary for synapsin function suggesting that synapsin phosphorylation is essential for STH. Consistently, biochemical analyses using a phospho-synapsin-specific antiserum show that synapsin is a target of Ca(2+) calmodulin-dependent kinase II (CaMKII) phosphorylation in vivo. Additional behavioral and genetic observations demonstrate that CaMKII function is necessary in LNs for STH. Together, these data support a model in which CaMKII-mediated synapsin phosphorylation in LNs induces synaptic vesicle mobilization and thereby presynaptic facilitation of GABA release that underlies olfactory STH. Finally, the striking observation that LTH occurs normally in syn(97) mutants indicates that signaling pathways for STH and LTH diverge upstream of synapsin function in GABAergic interneurons.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Habituación Psicofisiológica/fisiología , Interneuronas/metabolismo , Percepción Olfatoria/fisiología , Sinapsinas/metabolismo , Animales , Animales Modificados Genéticamente , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Drosophila , Fosforilación , Olfato/fisiología , Sinapsis/metabolismo , Sinapsinas/genética , Vesículas Sinápticas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
15.
Dev Biol ; 381(1): 17-27, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23810656

RESUMEN

An important role in olfactory system development is played by transcription factors which act in sensory neurons or in their interneuron targets as cell autonomous regulators of downstream effectors such as cell surface molecules and signalling systems that control neuronal identity and process guidance. Some of these transcriptional regulators have been characterized in detail in the development of the neural elements that innervate the antennal lobe in the olfactory system of Drosophila. Here we identify the zinc finger transcription factor Jing as a cell autonomously acting transcriptional regulator that is required both for dendrite targeting of projection neurons and local interneurons as well as for axonal targeting of olfactory sensory neurons in Drosophila olfactory system development. Immunocytochemical analysis shows that Jing is widely expressed in the neural cells during postembryonic development. MARCM-based clonal analysis of projection neuron and local interneuron lineages reveals a requirement for Jing in dendrite targeting; Jing loss-of-function results in loss of innervation in specific glomeruli, ectopic innervation of inappropriate glomeruli, aberrant profuse dendrite arborisation throughout the antennal lobe, as well as mistargeting to other parts of the CNS. ey-FLP-based MARCM analysis of olfactory sensory neurons reveals an additional requirement for Jing in axonal targeting; mutational inactivation of Jing causes specific mistargeting of some olfactory sensory neuron axons to the DA1 glomerulus, reduction of targeting to other glomeruli, as well as aberrant stalling of axons in the antennal lobe. Taken together, these findings indicate that Jing acts as a key transcriptional control element in wiring of the circuitry in the developing olfactory sensory system in Drosophila.


Asunto(s)
Antenas de Artrópodos/metabolismo , Axones/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Vías Olfatorias/embriología , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/embriología , Factores de Transcripción/metabolismo , Dedos de Zinc
16.
Development ; 138(11): 2347-57, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558381

RESUMEN

Myoblast fusion provides a fundamental, conserved mechanism for muscle fiber growth. We demonstrate here that the functional contribution of Wsp, the Drosophila homolog of the conserved actin nucleation-promoting factor (NPF) WASp, is essential for myoblast fusion during the formation of muscles of the adult fly. Disruption of Wsp function results in complete arrest of myoblast fusion in all muscles examined. Wsp activity during adult Drosophila myogenesis is specifically required for muscle cell fusion and is crucial both for the formation of new muscle fibers and for the growth of muscles derived from persistent larval templates. Although Wsp is expressed both in fibers and individual myoblasts, its activity in either one of these cell types is sufficient. SCAR, a second major Arp2/3 NPF, is also required during adult myoblast fusion. Formation of fusion-associated actin 'foci' is dependent on Arp2/3 complex function, but appears to rely on a distinct, unknown nucleator. The comprehensive nature of these requirements identifies Arp2/3-based branched actin polymerization as a universal mechanism underlying myoblast fusion.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Desarrollo de Músculos/fisiología , Mioblastos/fisiología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Animales Modificados Genéticamente , Fusión Celular , Membrana Celular/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Mioblastos/metabolismo , ARN Interferente Pequeño , Proteína del Síndrome de Wiskott-Aldrich/genética
17.
PLoS Genet ; 7(10): e1002302, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046139

RESUMEN

Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Mutación , Proteínas Nucleares/química , Estructura Terciaria de Proteína/genética , Factores de Transcripción/química , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
18.
J Neurosci ; 32(21): 7225-31, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623667

RESUMEN

Recurrent inhibition, wherein excitatory principal neurons stimulate inhibitory interneurons that feedback on the same principal cells, occurs ubiquitously in the brain. However, the regulation and function of recurrent inhibition are poorly understood in terms of the contributing interneuron subtypes as well as their effect on neural and cognitive outputs. In the Drosophila olfactory system, odorants activate olfactory sensory neurons (OSNs), which stimulate projection neurons (PNs) in the antennal lobe. Both OSNs and PNs activate local inhibitory neurons (LNs) that provide either feedforward or recurrent/feedback inhibition in the lobe. During olfactory habituation, prior exposure to an odorant selectively decreases the animal's subsequent response to the odorant. We show here that habituation occurs in response to feedback from PNs. Output from PNs is necessary for olfactory habituation and, in the absence of odorant, direct PN activation is sufficient to induce the odorant-selective behavioral attenuation characteristic of olfactory habituation. PN-induced habituation occludes further odor-induced habituation and similarly requires GABA(A)Rs and NMDARs in PNs, as well as VGLUT and cAMP signaling in the multiglomerular inhibitory local interneurons (LN1) type of LN. Thus, PN output is monitored by an LN subtype whose resultant plasticity underlies behavioral habituation. We propose that recurrent inhibitory motifs common in neural circuits may similarly underlie habituation to other complex stimuli.


Asunto(s)
Antenas de Artrópodos/fisiología , Conexinas/fisiología , Proteínas de Drosophila/fisiología , Retroalimentación Sensorial/fisiología , Proteínas del Tejido Nervioso/fisiología , Inhibición Neural/fisiología , Vías Olfatorias/fisiología , Animales , Animales Modificados Genéticamente , Conexinas/genética , AMP Cíclico/fisiología , Drosophila , Proteínas de Drosophila/genética , Dinaminas/genética , Dinaminas/fisiología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/fisiología , Habituación Psicofisiológica/fisiología , Canales Iónicos , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Receptores Odorantes/fisiología , Células Receptoras Sensoriales/fisiología , Olfato/fisiología , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/fisiología , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/fisiología
19.
Development ; 137(8): 1351-60, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20223760

RESUMEN

The dendrites of neurons undergo dramatic reorganization in response to developmental and other cues, such as stress and hormones. Although their morphogenesis is an active area of research, there are few neuron preparations that allow the mechanistic study of how dendritic fields are established in central neurons. Dendritic refinement is a key final step of neuronal circuit formation and is closely linked to emergence of function. Here, we study a central serotonergic neuron in the Drosophila brain, the dendrites of which undergo a dramatic morphological change during metamorphosis. Using tools to manipulate gene expression in this neuron, we examine the refinement of dendrites during pupal life. We show that the final pattern emerges after an initial growth phase, in which the dendrites function as 'detectors', sensing inputs received by the cell. Consistent with this, reducing excitability of the cell through hyperpolarization by expression of K(ir)2.1 results in increased dendritic length. We show that sensory input, possibly acting through NMDA receptors, is necessary for dendritic refinement. Our results indicate that activity triggers Wnt signaling, which plays a 'pro-retraction' role in sculpting the dendritic field: in the absence of sensory input, dendritic arbors do not retract, a phenotype that can be rescued by activating Wnt signaling. Our findings integrate sensory activity, NMDA receptors and Wingless/Wnt5 signaling pathways to advance our understanding of how dendritic refinement is established. We show how the maturation of sensory function interacts with broadly distributed signaling molecules, resulting in their localized action in the refinement of dendritic arbors.


Asunto(s)
Dendritas/fisiología , Drosophila/fisiología , Neuronas/fisiología , Envejecimiento , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Dendritas/genética , Drosophila/citología , Drosophila/genética , Homeostasis , Inmunohistoquímica , Larva/citología , Larva/fisiología , Neuronas/citología , ARN/genética , Interferencia de ARN , Receptores de N-Metil-D-Aspartato/fisiología , Serotonina/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología
20.
Exp Cell Res ; 318(6): 753-67, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22300583

RESUMEN

Cell migration is a common cellular process in angiogenesis and tumor metastasis. Rudhira/BCAS3 (Breast Cancer Amplified Sequence 3) is a conserved protein expressed in the embryonic vasculature and malignant tumors. Here, we show for the first time that Rudhira plays an active role in directional cell migration. Rudhira depletion in endothelial cells inhibits Matrigel-induced tube formation and retards healing of wounded cell monolayers. We demonstrate that during wound healing, Rudhira rapidly re-localizes and promotes Cdc42 activation and recruitment to the leading edge of migrating cells. Rudhira deficient cells show impaired downstream signaling of Cdc42 leading to dramatic changes in actin organization and classic cell polarity defects such as loss of microtubule organizing center (MTOC) and Golgi re-orientation. Biochemical assays and co-localization studies show that Rudhira interacts with microtubules as well as intermediate filaments. Thus, Rudhira could control directional cell migration and angiogenesis by facilitating crosstalk between cytoskeletal elements.


Asunto(s)
Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA