Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 20(5): 727-735, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30672638

RESUMEN

Twelve surface-active ionic liquids (SAILs) and surface-active derivatives, based on imidazolium, ammonium, and phosphonium cations and containing one, or more, long alkyl chains in the cation and/or the anion, were synthetized and characterized. The aggregation behavior of these SAILs in water, as well as their adsorption at solution/air interface, were studied by assessing surface tension and conductivity. The CMC values obtained (0.03-6.0 mM) show a high propensity of these compounds to self-aggregate in aqueous media. Their thermal properties were also characterized, namely the melting point and decomposition temperature by using DSC and TGA, respectively. Furthermore, the toxicity of these SAILs was evaluated using the marine bacteria Aliivibrio fischeri (Gram-negative). According to the EC50 values obtained (0.3-2.7 mg L-1 ), the surface-active compounds tested should be considered "toxic" or "highly toxic". Their ability to induce cell disruption of Escherichia coli cells (also Gram-negative), releasing the intracellular green fluorescent protein (GFP) produced, was investigated. The results clearly evidence the capability of these SAILs to act as cell disruption agents.


Asunto(s)
Escherichia coli/química , Escherichia coli/efectos de los fármacos , Líquidos Iónicos/síntesis química , Líquidos Iónicos/farmacología , Compuestos de Amonio/química , Escherichia coli/citología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Imidazoles/química , Líquidos Iónicos/química , Líquidos Iónicos/metabolismo , Compuestos Organofosforados/química , Propiedades de Superficie
2.
Phys Chem Chem Phys ; 17(4): 2560-72, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25493639

RESUMEN

This work presents the synthesis, volatility study and electrospray ionization mass spectrometry with energy-variable collision induced dissociation of the isolated [(cation)2(anion)](+) of a novel series of 2-alkyl-1-ethyl pyridinium based ionic liquids, [(2)CN-2(1)C2Py][NTf2]. Compared to the imidazolium based ionic liquids, the new ionic liquid series presents a higher thermal stability and lower volatility. The [(cation)2(anion)](+) collision induced dissociation energies of both [(2)CN-2(1)C2Py][NTf2] and [CNPy][NTf2] pyridinium series show an identical trend with a pronounced decrease of the relative cation-anion interaction energy towards an almost constant value for N = 6. It was found that the lower volatility of [(2)CN-2(1)C2Py][NTf2] with a shorter alkyl chain length is due to its higher enthalpy of vaporization. Starting from [(2)C3(1)C2Py][NTf2], the lower volatility is governed by the combination of slightly lower entropies and higher enthalpies of vaporization, an indication of a higher structural disorder of the pyridinium based ionic liquids than the imidazolium based ionic liquids. Dissociation energies and volatility trends support the cohesive energy interpretation model based on the overlapping of the electrostatic and van der Waals functional interaction potentials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA