Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 141(3): 383-397, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33532912

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt-Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/transmisión , Proteínas PrPSc , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
2.
Cell Mol Life Sci ; 75(14): 2557-2574, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29761205

RESUMEN

Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.


Asunto(s)
Priones/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Humanos , Nanotubos , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/etiología , Agregado de Proteínas , Pliegue de Proteína , Transporte de Proteínas
3.
Cell Mol Life Sci ; 75(14): 2575, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29907937

RESUMEN

In the original publication, part of acknowledgement text was missing. The complete acknowledgement section should read as follows.

4.
J Virol ; 90(3): 1638-46, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608316

RESUMEN

UNLABELLED: Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE: Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.


Asunto(s)
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Enfermedades por Prión/patología , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Mutación Missense , Eliminación de Secuencia , Ovinos
5.
PLoS Pathog ; 10(6): e1004202, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945656

RESUMEN

The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/diagnóstico , Encefalopatía Espongiforme Bovina/diagnóstico , Pruebas Hematológicas/métodos , Priones/sangre , Secuencia de Aminoácidos , Animales , Bovinos , Síndrome de Creutzfeldt-Jakob/sangre , Síndrome de Creutzfeldt-Jakob/transmisión , Diagnóstico Precoz , Encefalopatía Espongiforme Bovina/sangre , Encefalopatía Espongiforme Bovina/transmisión , Humanos , Macaca fascicularis , Masculino , Ovinos , Porcinos
6.
Cell Mol Life Sci ; 72(6): 1185-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25227242

RESUMEN

Cell-to-cell transfer of prions is a crucial step in the spreading of prion infection through infected tissue. At the cellular level, several distinct pathways including direct cell-cell contacts and release of various types of infectious extracellular vesicles have been described that may potentially lead to infection of naïve cells. The relative contribution of these pathways and whether they may vary depending on the prion strain and/or on the infected cell type are not yet known. In this study we used a single cell type (RK13) infected with three different prion strains. We showed that in each case, most of the extracellular prions resulted from active cell secretion through the exosomal pathway. Further, quantitative analysis of secreted infectivity indicated that the proportion of prions eventually secreted was dramatically dependent on the prion strain. Our data also highlight that infectious exosomes secreted from cultured cells might represent a biologically pertinent material for spiking experiments. Also discussed is the appealing possibility that abnormal PrP from different prion strains may differentially interact with the cellular machinery to promote secretion.


Asunto(s)
Exosomas/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Animales , Células Clonales , Ratones , Conejos , Ovinos
7.
Cell Mol Life Sci ; 72(22): 4409-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26047659

RESUMEN

Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Exosomas/genética , Priones/genética , Transducción de Señal/genética , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Línea Celular , Línea Celular Tumoral , Ceramidas/metabolismo , Proteínas de Unión al ADN/genética , Exosomas/metabolismo , Exosomas/ultraestructura , Humanos , Immunoblotting , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , Priones/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Interferencia de ARN , Conejos , Ovinos , Factores de Transcripción/genética
8.
PLoS Pathog ; 8(6): e1002782, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737075

RESUMEN

It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 10³ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 10³·6ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation.


Asunto(s)
Transfusión de Leucocitos/efectos adversos , Proteínas PrPSc/sangre , Enfermedades por Prión/sangre , Enfermedades por Prión/transmisión , Animales , Western Blotting , Supervivencia Celular , Modelos Animales de Enfermedad , Inmunohistoquímica , Leucocitos , Ratones , Ratones Transgénicos , Ovinos
9.
J Virol ; 86(4): 2056-66, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156536

RESUMEN

The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.


Asunto(s)
Plaquetas/virología , Modelos Animales de Enfermedad , Leucocitos Mononucleares/virología , Ratones , Enfermedades por Prión/veterinaria , Enfermedades por Prión/virología , Scrapie/virología , Animales , Humanos , Ratones Transgénicos , Enfermedades por Prión/transmisión , Scrapie/transmisión , Ovinos
10.
J Biol Chem ; 286(10): 8141-8148, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21212268

RESUMEN

Prion diseases are characterized by deposits of abnormal conformers of the PrP protein. Although large aggregates of proteinase K-resistant PrP (PrP(res)) are infectious, the precise relationships between aggregation state and infectivity remain to be established. In this study, we have fractionated detergent lysates from prion-infected cultured cells by differential ultracentrifugation and ultrafiltration and have characterized a previously unnoticed PrP species. This abnormal form is resistant to proteinase K digestion but, in contrast to typical aggregated PrP(res), remains in the soluble fraction at intermediate centrifugal forces and is not retained by filters of 300-kDa cutoff. Cell-based assay and inoculation to animals demonstrate that these entities are infectious. The finding that cell-derived small infectious PrP(res) aggregates can be recovered in the absence of strong in vitro denaturating treatments now gives a biological basis for investigating the role of small PrP aggregates in the pathogenicity and/or the multiplication cycle of prions.


Asunto(s)
Proteínas PrPSc , Enfermedades por Prión/metabolismo , Animales , Línea Celular , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/aislamiento & purificación , Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidad , Enfermedades por Prión/genética , Ovinos
11.
J Virol ; 84(5): 2444-52, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032176

RESUMEN

Mouse bioassay remains the gold standard for determining proof of infectivity, strain type, and infectious titer estimation in prion disease research. The development of an approach using ex vivo cell-based assays remains an attractive alternative, both in order to reduce the use of mice and to hasten results. The main limitation of a cell-based approach is the scarcity of cell lines permissive to infection with natural transmissible spongiform encephalopathy strains. This study combines two advances in this area, namely, the standard scrapie cell assay (SSCA) and the Rov9 and MovS6 cell lines, which both express the ovine PrP VRQ allele, to assess to what extent natural and experimental ovine scrapie can be detected ex vivo. Despite the Rov9 and MovS6 cell lines being of different biological origin, they were both permissive and resistant to infection with the same isolates of natural sheep scrapie as detected by SSCA. Rov9 subclones that are 20 times more sensitive than Rov9 to SSBP/1-like scrapie infection were isolated, but all the subclones maintained their resistance to isolates that failed to transmit to the parental line. The most sensitive subclone of the Rov9 cell line was used to estimate the infectious titer of a scrapie brain pool (RBP1) and proved to be more sensitive than the mouse bioassay using wild-type mice. Increasing the sensitivity of the Rov9 cell line to SSBP/1 infection did not correlate with broadening susceptibility, as the specificity of permissiveness and resistance to other scrapie isolates was maintained.


Asunto(s)
Bioensayo/métodos , Línea Celular , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Animales , Femenino , Masculino , Ratones , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/patogenicidad , Scrapie/genética , Sensibilidad y Especificidad , Ovinos , Enfermedades de las Ovejas/genética , Enfermedades de las Ovejas/metabolismo
12.
Acta Neuropathol Commun ; 9(1): 145, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454616

RESUMEN

Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt-Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/epidemiología , Síndrome de Creutzfeldt-Jakob/patología , Encefalopatía Espongiforme Bovina/epidemiología , Encefalopatía Espongiforme Bovina/patología , Hormona de Crecimiento Humana/efectos adversos , Proteínas PrPSc/efectos adversos , Adulto , Animales , Estudios de Cohortes , Síndrome de Creutzfeldt-Jakob/transmisión , Encefalopatía Espongiforme Bovina/transmisión , Femenino , Francia/epidemiología , Hormona de Crecimiento Humana/administración & dosificación , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas PrPSc/administración & dosificación , Proteínas PrPSc/aislamiento & purificación , Reino Unido/epidemiología
13.
mBio ; 11(3)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546613

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) cases are currently classified according to the methionine/valine polymorphism at codon 129 of the PRNP gene and the proteinase K-digested abnormal prion protein (PrPres) isoform identified by Western blotting (type 1 or type 2). Converging evidence led to the view that MM/MV1, VV/MV2, and VV1 and MM2 sCJD cases are caused by distinct prion strains. However, in a significant proportion of sCJD patients, both type 1 and type 2 PrPres were reported to accumulate in the brain, which raised questions about the diversity of sCJD prion strains and the coexistence of two prion strains in the same patient. In this study, a panel of sCJD brain isolates (n = 29) that displayed either a single or mixed type 1/type 2 PrPres were transmitted into human-PrP-expressing mice (tgHu). These bioassays demonstrated that two distinct prion strains (M1CJD and V2CJD) were associated with the development of sCJD in MM1/MV1 and VV2/MV2 patients. However, in about 35% of the investigated VV and MV cases, transmission results were consistent with the presence of both M1CJD and V2CJD strains, including in patients who displayed a "pure" type 1 or type 2 PrPres The use of a highly sensitive prion in vitro amplification technique that specifically probes the V2CJD strain revealed the presence of the V2CJD prion in more than 80% of the investigated isolates, including isolates that propagated as a pure M1CJD strain in tgHu. These results demonstrate that at least two sCJD prion strains can be present in a single patient.IMPORTANCE sCJD occurrence is currently assumed to result from spontaneous and stochastic formation of a misfolded PrP nucleus in the brains of affected patients. This original nucleus then recruits and converts nascent PrPC into PrPSc, leading to the propagation of prions in the patient's brain. Our study demonstrates the coexistence of two prion strains in the brains of a majority of the 23 sCJD patients investigated. The relative proportion of these sCJD strains varied both between patients and between brain areas in a single patient. These findings strongly support the view that the replication of an sCJD prion strain in the brain of a patient can result in the propagation of different prion strain subpopulations. Beyond its conceptual importance for our understanding of prion strain properties and evolution, the sCJD strain mixture phenomenon and its frequency among patients have important implications for the development of therapeutic strategies for prion diseases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/transmisión , Variación Genética , Priones/genética , Animales , Bioensayo , Encéfalo/patología , Línea Celular , Codón , Femenino , Humanos , Metionina/genética , Ratones , Proteínas PrPSc/genética , Priones/clasificación , Isoformas de Proteínas , Valina/genética
14.
Methods Mol Biol ; 1658: 95-104, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861785

RESUMEN

Cultured cells are valuable models to study prion infections at the cellular level. Unfortunately, the vast majority of cell lines are resistant to the propagation of prion agents. The rabbit epithelial RK13 cell line is among the few cell lines permissive to prion infection. When genetically engineered to express heterologous PrP proteins, RK13 cells become permissive to several strains of prions from various animal species. Here, we describe the generation of stable RK13 cell clones expressing a heterologous PrP protein in an inducible manner, the establishment and maintenance of chronically infected cultures, and the selection of cell clones suitable for cell-based titration of prions.


Asunto(s)
Células Epiteliales/metabolismo , Efecto Fundador , Immunoblotting/métodos , Proteínas PrPSc/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnicas de Cultivo de Célula , Línea Celular , Células Clonales , Clonación Molecular , Endopeptidasa K/química , Células Epiteliales/patología , Expresión Génica , Humanos , Ratones , Plásmidos/química , Plásmidos/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Pliegue de Proteína , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Methods Mol Biol ; 1545: 153-176, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27943213

RESUMEN

Extracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40-120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e., shedding vesicles, 100 nm to 1 µm sized) bud from the plasma membrane. Exosomes and microvesicles carry functional proteins and nucleic acids (especially mRNAs and microRNAs) that can be transferred to surrounding cells and tissues and can impact multiple dimensions of the cellular life. Most of the cells, if not all, from neuronal to immune cells, release exosomes and microvesicles in the extracellular medium, and all biological fluids including blood (serum/plasma), urine, cerebrospinal fluid, and saliva contain EVs.Prion-infected cultured cells are known to secrete infectivity into their environment. We characterized this cell-free form of prions and showed that infectivity was associated with exosomes. Since exosomes are produced by a variety of cells, including cells that actively accumulate prions, they could be a vehicle for infectivity in body fluids and could participate to the dissemination of prions in the organism. In addition, such infectious exosomes also represent a natural, simple, biological material to get key information on the abnormal PrP forms associated with infectivity.In this chapter, we describe first a method that allows exosomes and microvesicles isolation from prion-infected cell cultures and in a second time the strategies to characterize the prions containing exosomes and their ability to disseminate the prion agent.


Asunto(s)
Fraccionamiento Celular/métodos , Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Enfermedades por Prión/transmisión , Priones/metabolismo , Animales , Células Cultivadas , Ratones , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo
16.
Sci Rep ; 6: 29116, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384922

RESUMEN

Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.


Asunto(s)
Bioquímica/métodos , Priones/metabolismo , Pliegue de Proteína , Animales , Encéfalo/metabolismo , Extractos Celulares , Línea Celular , Células Cultivadas , Electroforesis , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Ratones Transgénicos , Microesferas , Miniaturización , Proteínas Mutantes/metabolismo , Factores de Tiempo
17.
Neurosci Lett ; 388(2): 106-11, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16039063

RESUMEN

The transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases. A primary therapeutic target for TSE intervention has been a protease-resistant form of prion protein known as PrP(Sc) or PrP-res. In vitro testing of mouse scrapie-infected cell cultures has identified many PrP-res inhibitors that also have activity in vivo. Here we identify 32 new inhibitors of two strains of mouse scrapie PrP-res. Furthermore, to investigate the species-specificity of these and other PrP-res inhibitors, we have developed a high-throughput cell culture assay based on Rov9 cells chronically-infected with sheep scrapie. Of 32 inhibitors of murine PrP-res that were also tested in the Rov9 cells, only six showed inhibitory activity against sheep PrP-res. The three most potent inhibitors of both murine and ovine PrP-res formation (with 50% inhibition at < or =5 microM) were tannic acid, pentosan polysulfate and Fe(III) deuteroporphyrin 2,4-bisethyleneglycol. The latter two have anti-mouse scrapie activity in vivo. These results identify new inhibitors of murine and ovine PrP-res formation and reinforce the idea that compounds effective against PrP-res from one species or strain cannot be assumed to be active against others.


Asunto(s)
Proteínas PrPSc/antagonistas & inhibidores , Scrapie/tratamiento farmacológico , Scrapie/metabolismo , Taninos/farmacología , Animales , Línea Celular , Deuteroporfirinas/farmacología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/citología , Compuestos Férricos/farmacología , Ratones , Poliéster Pentosan Sulfúrico/farmacología , Proteínas PrPSc/metabolismo , Conejos , Ovinos , Especificidad de la Especie
18.
C R Biol ; 325(1): 49-57, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11862622

RESUMEN

Sheep scrapie is a prototypical transmissible spongiform encephalopathy (TSE), and the most widespread of these diseases. Experimental study of TSE infectious agents from sheep and other species essentially depends on bioassays in rodents. Transmission of natural sheep scrapie to conventional mice commonly requires one or two years. In an effort to develop laboratory models in which investigations on the sheep TSE agent would be facilitated, we have established mice and cell lines that were genetically engineered to express ovine PrP protein and examined their susceptibility to the infection. A series of transgenic mice lines (tgOv) expressing the high susceptibility allele (VRQ) of the ovine PrP gene from different constructs was expanded. Following intracerebral inoculation with natural scrapie isolates, all animals developed typical TSE neurological signs and accumulated abnormal PrP in their brain. The survival time in the highest expressing tgOv lines ranged from 2 to 7 months, depending on the isolate. It was inversely related to the brain PrP content, and essentially unchanged on further passaging. Ovine PrP transgene expression thus enhanced scrapie disease transmission from sheep to mice. Such tgOv mice may bring new opportunities for analysing the natural variation of scrapie strains and measuring infectivity. As no relevant cell culture models for agents of naturally-occurring TSE exist, we have explored various strategies in order to obtain stable cell lines that would propagate the sheep agent ex vivo without prior adaptation to rodent. In one otherwise refractory rabbit epithelial cell line, a regulable expression of ovine PrP was achieved and found to enable an efficient replication of the scrapie agent in inoculated cultures. Cells derived from sheep embryos or from tgOv mice were also used in an attempt to establish permissive cell lines derived from the nervous system. Cells engineered to express PrP proteins of a specified sequence may thus represent a promising strategy to further explore, at the cellular level, various aspects of TSE diseases.


Asunto(s)
Modelos Animales de Enfermedad , Scrapie , Alelos , Animales , Línea Celular , Expresión Génica , Predisposición Genética a la Enfermedad , Ratones , Ratones Transgénicos , Priones/genética , Scrapie/genética , Scrapie/transmisión , Ovinos
19.
C R Biol ; 325(1): 59-65, 2002 Jan.
Artículo en Francés | MEDLINE | ID: mdl-11862623

RESUMEN

Cell cultures represent versatile and useful experimental models of transmissible spongiform encephalopathies. These models include chronically prion infected cell lines, as well as cultures expressing variable amounts of wild-type, mutated or chimeric prion proteins. These cultures have been widely used to investigate the biology of both the normal and the pathological isoform of the prion protein. They have also contributed to the comprehension of the pathogenic processes occurring in transmissible spongiform encephalopathies and in the development of new therapeutic approaches of these diseases.


Asunto(s)
Técnicas de Cultivo de Célula , Modelos Biológicos , Enfermedades por Prión , Animales , Línea Celular , Expresión Génica , Ratones , Ratones Transgénicos , Mutación , Priones/genética , Transfección
20.
PLoS One ; 9(8): e104287, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25122456

RESUMEN

Prion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products. The objectives of this study were to compare different methods--in vitro, ex vivo and in vivo assays--to detect prion infectivity in cells prepared from blood samples obtained from scrapie infected sheep at different time points of the disease. Protein misfolding cyclic amplification (PMCA) and bioassays in transgenic mice expressing the ovine prion protein were the most efficient methods to identify infected animals at any time of the disease (asymptomatic to terminally-ill stages). However scrapie cell and cerebellar organotypic slice culture assays designed to replicate ovine prions in culture also allowed detection of prion infectivity in blood cells from asymptomatic sheep. These findings confirm that white blood cells are appropriate targets for preclinical detection and introduce ex vivo tools to detect blood infectivity during the asymptomatic stage of the disease.


Asunto(s)
Bioensayo/métodos , Leucocitos/química , Priones/patogenicidad , Scrapie/diagnóstico , Animales , Infecciones Asintomáticas , Cerebelo/metabolismo , Ratones , Ratones Transgénicos , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Ovinos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA