RESUMEN
An unexpected 1,3-dioxa-[3,3]-sigmatropic rearrangement during the treatment of aryl- and alkenyl-substituted allylic alcohols with activated isocyanates is reported. The reorganization of bonds is highly dependent on the electron density of the aromatic ring and the nature of isocyanate used. This metal-free tandem reaction from branched allyl alcohols initiated by a carbamoylation reaction and followed by a sigmatropic rearrangement thus offers a new access to ( E)-cinnamyl and conjugated ( E, E)-diene carbamates, such as N-acyl and N-sulfonyl derivatives. A computational study was conducted in order to rationalize this phenomenon, and a rearrangement progress kinetic analysis was performed.
RESUMEN
An efficient asymmetric synthesis of α-amino allylsilane derivatives is reported. The strategy is based on a [3,3]-allyl cyanate sigmatropic rearrangement from enantioenriched γ-hydroxy alkenylsilyl compounds. The isocyanate intermediate can be trapped by several nucleophiles, opening the way for the preparation of unknown chiral functionalized compounds such as the α-ureido allylsilanes as well as carbamate derivatives. A computational study was conducted to rationalize the complete 1,3-chirality transfer of this kind of rearrangement. Moreover, starting from products bearing a phenyldimethyl silyl substituent, the α-amino silane derivatives or the corresponding disiloxanes can be obtained under hydrogenation conditions in an exclusive way according to the used catalyst.
RESUMEN
The 5-HT(3) receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT(3) receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation-π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT(3) receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT(3) receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT(3) receptor.
Asunto(s)
Antieméticos/química , Granisetrón/análogos & derivados , Subunidades de Proteína/química , Receptores de Serotonina 5-HT3/química , Agonistas de Receptores de Serotonina/química , Serotonina/análogos & derivados , Secuencia de Aminoácidos , Antieméticos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Granisetrón/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Serotonina/metabolismo , Agonistas de Receptores de Serotonina/metabolismo , Electricidad Estática , TermodinámicaRESUMEN
3-Amino-2H-azirines are potentially versatile building blocks in heterocyclic and peptide synthesis. Three new 3-amino-2H-azirines have been synthesized as racemates or mixtures of diastereoisomers in cases where another chiral residue is incorporated as the exocyclic amine. The crystal structures of two of them, an approximately 1:1 diastereoisomeric mixture of (2R)- and (2S)-2-ethyl-3-[(2S)-2-(1-methoxy-1,1-diphenylmethyl)pyrrolidin-1-yl]-2-methyl-2H-azirine, C23H28N2O, 11, and 2-benzyl-3-(N-methyl-N-phenylamino)-2-phenyl-2H-azirine, C22H20N2, 12, and the third as its diastereoisomeric trans-PdCl2 complex, trans-dichlorido[(2R)-2-ethyl-2-methyl-3-(X)-2H-azirine][(2S)-2-ethyl-2-methyl-3-(X)-2H-azirine]palladium(II), where X = N-{[(1S,2S,5S)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl]methyl}-N-phenylamino, [PdCl2(C21H30N2)2], 14, have been determined and the geometries of the azirine rings compared with those of 11 other 3-amino-2H-azirine structures reported in the literature. Most notable is the very long formal N-C single bond, which is, with one exception, around 1.57â Å. Each compound has crystallized in a chiral space group. The Pd atom in the trans-PdCl2 complex is coordinated by one of each of the pair of diastereoisomers, while both of the diastereoisomers share the same crystallographic site in the structure of 11; this property thereby manifesting itself as disorder. The chosen crystal of 12 is either an inversion twin or composed of a pure enantiomorph, but this could not be established specifically.
RESUMEN
Urolithins are gut microbiota metabolites produced in humans after consuming foods containing ellagitannins and ellagic acid. Three urolithin metabotypes have been reported for different individuals depending on the final urolithins produced. After absorption, they are conjugated with glucuronic acid (phase II metabolism), and these are the main circulating metabolites in plasma and reach different tissues. Different regioisomeric isomers of urolithin glucuronides have been described. Still, their identification and quantification in humans have not been properly reported due to resolution limitations in their analysis by reversed-phase high-performance liquid chromatography. In the present study, we report a novel method for separating these isomers using supercritical fluid chromatography. With this method, urolithin A 3- and 8-glucuronide, isourolithin A 3- and 9- glucuronide, and urolithin B 3-glucuronide (8-hydroxy urolithin 3-glucuronide; 3-hydroxy urolithin 8-glucuronide; 3-hydroxyurolithin 9-glucuronide; 9-hydroxyurolithin 3-glucuronide; and urolithin 3-glucuronide) were separated in less than 15 min. The proposed method was applied to successfully analyze these metabolites in urine samples from different volunteers belonging to different metabotypes.
Asunto(s)
Cromatografía con Fluido Supercrítico , Microbioma Gastrointestinal , Humanos , Glucurónidos/metabolismo , Cumarinas/química , Taninos Hidrolizables/metabolismoRESUMEN
Urolithins (dibenzo-pyran-[b,d]-6 one derivatives) are human gut microbiota metabolites produced from the natural food antioxidant ellagic acid. Urolithins are better absorbed than ellagic acid and demonstrate biological activities that suggest that they are responsible for the health effects observed after consuming ellagitannin- and ellagic acid-containing foods. Urolithins occur in the systemic circulation as glucuronide conjugates following phase II metabolism. These phase II conjugates are essential for testing the urolithin mechanisms of action in human cell line bioassays. Urolithin glucuronides are not commercially available, and their biosynthesis leads to mixtures of regional isomers. This study describes a novel and regioselective synthesis of urolithin A (3,8-dihydroxy urolithin) 3- and 8-glucuronides and isourolithin A (3,9-dihydroxy urolithin) 3- and 9-glucuronides. The metabolites were characterized using 1H and 13C NMR spectroscopy and UV spectrophotometry. The presence of these metabolites in human subjects belonging to different urolithin metabotypes was also investigated.
Asunto(s)
Microbioma Gastrointestinal , Taninos Hidrolizables , Cumarinas/química , Ácido Elágico/metabolismo , Glucurónidos/metabolismo , Humanos , Taninos Hidrolizables/metabolismoRESUMEN
Pentameric ligand-gated ion channels (pLGIC) catalyze the selective transfer of ions across the cell membrane in response to a specific neurotransmitter. A variety of chemically diverse molecules, including the Alzheimer's drug memantine, block ion conduction at vertebrate pLGICs by plugging the channel pore. We show that memantine has similar potency in ELIC, a prokaryotic pLGIC, when it contains an F16'S pore mutation. X-ray crystal structures, using both memantine and its derivative, Br-memantine, reveal that the ligand is localized at the extracellular entryway of the channel pore, and the pore is in a more closed conformation than wild-type ELIC in both the presence and absence of memantine. However, using voltage clamp fluorometry we observe fluorescence changes in opposite directions during channel activation and pore block, revealing an additional conformational transition not apparent from the crystal structures. These results have important implications for drugs such as memantine, which block channel pores.
Asunto(s)
Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Memantina/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Cristalografía por Rayos X , Dickeya chrysanthemi/química , Humanos , Canales Iónicos Activados por Ligandos/genética , Memantina/metabolismo , Memantina/farmacología , Modelos Moleculares , Imitación Molecular , Datos de Secuencia Molecular , Mutación , Oocitos/citología , Oocitos/fisiología , Técnicas de Placa-Clamp , Fenilalanina/química , Conformación Proteica , Rimantadina/farmacología , XenopusRESUMEN
A simple and straightforward methodology toward the synthesis of novel 2,6-disubstituted-4-alkoxypyrimidine derivatives of type 16 and 19 has been developed. This methodology, initially developed in solution, can be perfectly adapted to the solid support under analogous conditions, taking full advantage of automated parallel synthesis systems. This successful methodology benefits from the key role played by the thioether linkage placed at the 2-position in 3, 9, or 13 in a double manner: on one side, the steric effect exerted by the thioether linkage is likely to be responsible for the very high observed selectivity toward the formation of the O-alkylation products. On the other side, this sulfur linkage can serve not only as a robust point of attachment for the heterocycle, stable to a number of reaction conditions, but also as a means of introducing a new element of diversity through activation to the corresponding sulfone (safety-catch linker concept) and subsequent ipso-substitution reaction with a variety of different N-nucleophiles.