Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 1029-1060, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29709200

RESUMEN

Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.


Asunto(s)
ADN Antiguo , Evolución Molecular , Animales , Evolución Biológica , Extinción Biológica , Fósiles , Genómica , Humanos , Lípidos/genética , Paleontología , Filogenia , Proteínas/genética , Proteómica
2.
Nature ; 625(7994): 321-328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200296

RESUMEN

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma Humano , Pradera , Esclerosis Múltiple , Humanos , Conjuntos de Datos como Asunto , Dieta/etnología , Dieta/historia , Europa (Continente)/etnología , Predisposición Genética a la Enfermedad/historia , Genética Médica , Historia del Siglo XV , Historia Antigua , Historia Medieval , Migración Humana/historia , Estilo de Vida/etnología , Estilo de Vida/historia , Esclerosis Múltiple/genética , Esclerosis Múltiple/historia , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/historia , Enfermedades Neurodegenerativas/inmunología , Densidad de Población
3.
Nature ; 625(7994): 329-337, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200294

RESUMEN

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Asunto(s)
Genoma Humano , Genómica , Migración Humana , Pueblos Nórdicos y Escandinávicos , Humanos , Dinamarca/etnología , Emigrantes e Inmigrantes/historia , Genotipo , Pueblos Nórdicos y Escandinávicos/genética , Pueblos Nórdicos y Escandinávicos/historia , Migración Humana/historia , Genoma Humano/genética , Historia Antigua , Polen , Dieta/historia , Caza/historia , Agricultores/historia , Cultura , Fenotipo , Conjuntos de Datos como Asunto
4.
Nature ; 625(7994): 301-311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200295

RESUMEN

Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.


Asunto(s)
Genética de Población , Genoma Humano , Migración Humana , Metagenómica , Humanos , Agricultura/historia , Asia Occidental , Mar Negro , Diploidia , Europa (Continente)/etnología , Genotipo , Historia Antigua , Migración Humana/historia , Caza/historia , Cubierta de Hielo
5.
Nature ; 612(7939): 283-291, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477129

RESUMEN

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.


Asunto(s)
ADN Ambiental , Ecosistema , Ecología , Fósiles , Groenlandia
6.
Nature ; 600(7887): 86-92, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34671161

RESUMEN

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Asunto(s)
Biota , ADN Antiguo/análisis , ADN Ambiental/análisis , Metagenómica , Animales , Regiones Árticas , Cambio Climático/historia , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Extinción Biológica , Sedimentos Geológicos , Pradera , Groenlandia , Haplotipos/genética , Herbivoria/genética , Historia Antigua , Humanos , Lagos , Mamuts , Mitocondrias/genética , Perisodáctilos , Hielos Perennes , Filogenia , Plantas/genética , Dinámica Poblacional , Lluvia , Siberia , Análisis Espacio-Temporal , Humedales
7.
Nature ; 570(7760): 182-188, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168093

RESUMEN

Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas.


Asunto(s)
Genoma Humano/genética , Migración Humana/historia , Asia/etnología , ADN Antiguo/análisis , Europa (Continente)/etnología , Pool de Genes , Haplotipos , Historia del Siglo XV , Historia Antigua , Historia Medieval , Humanos , Indígenas Norteamericanos , Masculino , Siberia/etnología
9.
Nature ; 553(7687): 203-207, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323294

RESUMEN

Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25-20 ka, with Ancient Beringians branching off around 22-18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian 'standstill model'. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5-14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians.


Asunto(s)
Efecto Fundador , Genoma Humano/genética , Indígenas Norteamericanos/genética , Modelos Genéticos , Filogenia , Alaska , Asia Oriental/etnología , Flujo Génico , Genética de Población , Historia Antigua , Migración Humana , Humanos , Lactante , Ríos , Siberia/etnología , Factores de Tiempo
11.
Nature ; 557(7705): 418-423, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743673

RESUMEN

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.


Asunto(s)
Evolución Molecular , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B/virología , Filogenia , África , Animales , Asia , Europa (Continente) , Genotipo , Virus de la Hepatitis B/clasificación , Historia Antigua , Historia Medieval , Hominidae/virología , Migración Humana/historia , Humanos , Recombinación Genética
12.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963129

RESUMEN

Over the past few decades, there has been a growing demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult to obtain for ethical reasons, and standard methods of breaking the skull to access the petrous bone or sampling remaining teeth are often forbidden for curatorial reasons. However, most ancient humans carried head lice and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice nits to the hair of ancient Argentinian mummies, 1,500-2,000 years old. The genetic affinities deciphered from genome-wide analyses of this DNA inform that this population migrated from north-west Amazonia to the Andes of central-west Argentina; a result confirmed using the mitochondria of the host lice. The cement preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel cell polyomavirus. We found that the percentage of human DNA obtained from nit cement equals human DNA obtained from the tooth, yield 2-fold compared with a petrous bone, and 4-fold to a bloodmeal of adult lice a millennium younger. In metric studies of sheaths, the length of the cement negatively correlates with the age of the specimens, whereas hair linear distance between nit and scalp informs about the environmental conditions at the time before death. Ectoparasitic lice sheaths can offer an alternative, nondestructive source of high-quality ancient DNA from a variety of host taxa where bones and teeth are not available and reveal complementary details of their history.


Asunto(s)
ADN Ambiental , Pediculus , Animales , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Pediculus/genética , Cráneo
16.
Nature ; 522(7555): 167-72, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26062507

RESUMEN

The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.


Asunto(s)
Pueblo Asiatico/genética , Evolución Cultural/historia , Fósiles , Genoma Humano/genética , Genómica , Lenguaje/historia , Población Blanca/genética , Arqueología/métodos , Asia/etnología , ADN/genética , ADN/aislamiento & purificación , Europa (Continente)/etnología , Frecuencia de los Genes/genética , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Intolerancia a la Lactosa/genética , Polimorfismo de Nucleótido Simple/genética , Pigmentación de la Piel/genética
17.
Proc Natl Acad Sci U S A ; 115(29): 7557-7562, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967156

RESUMEN

Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to ∼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from ∼0.5 to ∼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed ∼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to ∼5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.


Asunto(s)
Eritema Infeccioso/genética , Evolución Molecular , Genoma Viral , Genotipo , Parvovirus B19 Humano/genética , Filogenia , Análisis de Secuencia de ADN , Eritema Infeccioso/historia , Historia del Siglo XIX , Historia del Siglo XX , Humanos
18.
J Infect Dis ; 220(8): 1312-1324, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31253993

RESUMEN

BACKGROUND: Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data. METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads. RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found. CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma/genética , Neoplasias/virología , Anelloviridae/genética , Anelloviridae/aislamiento & purificación , Biopsia , Conjuntos de Datos como Asunto , Femenino , Herpesviridae/genética , Herpesviridae/aislamiento & purificación , Humanos , Masculino , Neoplasias/patología , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Parvovirus/genética , Parvovirus/aislamiento & purificación
19.
Proc Natl Acad Sci U S A ; 113(52): 15066-15071, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956618

RESUMEN

In a screen for unexplained mutation events we identified a previously unrecognized mechanism generating clustered DNA polymorphisms such as microindels and cumulative SNPs. The mechanism, short-patch double illegitimate recombination (SPDIR), facilitates short single-stranded DNA molecules to invade and replace genomic DNA through two joint illegitimate recombination events. SPDIR is controlled by key components of the cellular genome maintenance machinery in the gram-negative bacterium Acinetobacter baylyi. The source DNA is primarily intragenomic but can also be acquired through horizontal gene transfer. The DNA replacements are nonreciprocal and locus independent. Bioinformatic approaches reveal occurrence of SPDIR events in the gram-positive human pathogen Streptococcus pneumoniae and in the human genome.


Asunto(s)
ADN/genética , Mutación , Polimorfismo Genético , Streptococcus pneumoniae/genética , Acinetobacter/genética , Alelos , Biología Computacional/métodos , Citoplasma/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , Eliminación de Gen , Transferencia de Gen Horizontal , Genoma Humano , Genómica , Genotipo , Humanos , Mutágenos , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Recombinación Genética , Análisis de Secuencia de ADN
20.
Emerg Infect Dis ; 23(2): 363-365, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28098541

RESUMEN

A novel human protoparvovirus related to human bufavirus and preliminarily named cutavirus has been discovered. We detected cutavirus in a sample of cutaneous malignant melanoma by using viral enrichment and high-throughput sequencing. The role of cutaviruses in cutaneous cancers remains to be investigated.


Asunto(s)
Melanoma/etiología , Infecciones por Parvoviridae/complicaciones , Infecciones por Parvoviridae/virología , Parvovirus , Neoplasias Cutáneas/etiología , ADN Viral , Genes Virales , Humanos , Melanoma/diagnóstico , Infecciones por Parvoviridae/diagnóstico , Filogenia , Análisis de Secuencia de ADN , Neoplasias Cutáneas/diagnóstico , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA