Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(6): 1561-1574.e12, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30449620

RESUMEN

The molecular mediator and functional significance of meal-associated brown fat (BAT) thermogenesis remains elusive. Here, we identified the gut hormone secretin as a non-sympathetic BAT activator mediating prandial thermogenesis, which consequentially induces satiation, thereby establishing a gut-secretin-BAT-brain axis in mammals with a physiological role of prandial thermogenesis in the control of satiation. Mechanistically, meal-associated rise in circulating secretin activates BAT thermogenesis by stimulating lipolysis upon binding to secretin receptors in brown adipocytes, which is sensed in the brain and promotes satiation. Chronic infusion of a modified human secretin transiently elevates energy expenditure in diet-induced obese mice. Clinical trials with human subjects showed that thermogenesis after a single-meal ingestion correlated with postprandial secretin levels and that secretin infusions increased glucose uptake in BAT. Collectively, our findings highlight the largely unappreciated function of BAT in the control of satiation and qualify BAT as an even more attractive target for treating obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Ingestión de Alimentos , Secretina/metabolismo , Termogénesis , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Células HEK293 , Humanos , Lipólisis , Ratones , Ratones Noqueados , Ratones Obesos , Secretina/genética
2.
Cell ; 150(2): 366-76, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22796012

RESUMEN

Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of "beige" cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but, like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we provide evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes. These data provide a foundation for studying this mammalian cell type with therapeutic potential. PAPERCLIP:


Asunto(s)
Adipocitos/clasificación , Adipocitos/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Separación Celular , Perfilación de la Expresión Génica , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 1
3.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671834

RESUMEN

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

4.
Eur J Nucl Med Mol Imaging ; 50(6): 1597-1606, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764966

RESUMEN

PURPOSE: Secretin activates brown adipose tissue (BAT) and induces satiation in both mice and humans. However, the exact brain mechanism of this satiety inducing, secretin-mediated gut-BAT-brain axis is largely unknown. METHODS AND RESULTS: In this placebo-controlled, single-blinded neuroimaging study, firstly using [18F]-fluorodeoxyglucose (FDG) PET measures (n = 15), we established that secretin modulated brain glucose consumption through the BAT-brain axis. Predominantly, we found that BAT and caudate glucose uptake levels were negatively correlated (r = -0.54, p = 0.037) during secretin but not placebo condition. Then, using functional magnetic resonance imaging (fMRI; n = 14), we found that secretin improved inhibitory control and downregulated the brain response to appetizing food images. Finally, in a PET-fMRI fusion analysis (n = 10), we disclosed the patterned correspondence between caudate glucose uptake and neuroactivity to reward and inhibition, showing that the secretin-induced neurometabolic coupling patterns promoted satiation. CONCLUSION: These findings suggest that secretin may modulate the BAT-brain metabolic crosstalk and subsequently the neurometabolic coupling to induce satiation. The study advances our understanding of the secretin signaling in motivated eating behavior and highlights the potential role of secretin in treating eating disorders and obesity. TRIAL REGISTRATION: EudraCT no. 2016-002373-35, registered 2 June 2016; Clinical Trials no. NCT03290846, registered 25 September 2017.


Asunto(s)
Tejido Adiposo Pardo , Apetito , Eje Cerebro-Intestino , Encéfalo , Conducta Alimentaria , Neuroimagen Funcional , Respuesta de Saciedad , Secretina , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Apetito/efectos de los fármacos , Apetito/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Secretina/metabolismo , Secretina/farmacología , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Eje Cerebro-Intestino/efectos de los fármacos , Eje Cerebro-Intestino/fisiología , Método Simple Ciego , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Glucosa/metabolismo , Recompensa , Transducción de Señal/efectos de los fármacos , Humanos , Conducta Alimentaria/efectos de los fármacos , Alimentos
5.
Am J Physiol Endocrinol Metab ; 322(1): E54-E62, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806426

RESUMEN

The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 µmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.


Asunto(s)
Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Miocardio/metabolismo , Secretina/administración & dosificación , Adolescente , Adulto , Anciano , Estudios Cruzados , Ayuno , Fluorodesoxiglucosa F18/metabolismo , Tasa de Filtración Glomerular , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Adulto Joven
6.
Eur J Appl Physiol ; 122(1): 81-90, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34564756

RESUMEN

PURPOSE: While brown adipose tissue (BAT) activity is known to be associated with both muscle and adipose tissue volumes, the association between BAT and muscle composition remains unclear, especially in adults. Therefore, the present study aimed to examine the association between BAT parameters (glucose uptake and fat-fraction) and muscle volumes and intramuscular adipose tissue contents among healthy young and middle-aged men. METHODS: BAT glucose uptake was determined using positron emission tomography with [18F]-2-deoxy-2-fluoro-D-glucose (18F-FDG) during cold exposure in 19 young and middle-aged men (36.3 ± 10.7 years). The fat-fraction of BAT was determined from volumes of interest set in cervical and supraclavicular adipose tissue depots using signal fat-fraction maps via magnetic resonance imaging (MRI). Muscle volumes and intramuscular adipose tissue contents of m. tibialis anterior and m. multifidus lumborum were measured using MRI. RESULTS: The fat-fraction of BAT was significantly associated with intramuscular adipose tissue content in m. tibialis anterior (n = 13, rs = 0.691, P = 0.009). A similar trend was also observed in m. multifidus lumborum (n = 19, rs = 0.454, P = 0.051). However, BAT glucose uptake was not associated with intramuscular adipose tissue contents in both muscles, nor were muscle volumes associated with the BAT glucose uptake and fat-fraction. CONCLUSION: The fat-fraction of BAT increases with skeletal muscle adiposity, especially in the lower leg, among healthy young and middle-aged men.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Adiposidad , Músculo Esquelético/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Adulto , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos
7.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34014371

RESUMEN

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Asunto(s)
Adipocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica/fisiología , Glucocorticoides/farmacología , Obesidad/genética , Factores de Transcripción/genética , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Adulto , Anciano , Animales , Estudios Transversales , Femenino , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Adulto Joven
8.
Arterioscler Thromb Vasc Biol ; 40(5): 1289-1295, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31941384

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) activity correlates negatively with obesity and insulin resistance, and BAT has been suggested to act as a protective factor against atherogenesis. We aimed to examine subclinical atherosclerosis and risk factor levels in a group of individuals who had 5 years earlier participated in positron-emission tomography studies with measurements of BAT activity. Approach and Results: Study cohort (males/females=5/26, baseline age 41.4±7.9 years; body mass index, 26.8±6.3 kg/m2) underwent positron-emission tomography imaging at baseline with [18F] FDG (glucose uptake) and [15O] H2O (perfusion) to measure BAT activity during cold exposure. At 5-year follow-up, ultrasound was performed to measure carotid intima-media thickness, carotid distensibility (a marker of arterial elasticity), and brachial flow-mediated dilation (an estimate of endothelial function). Fasting plasma lipids and hemoglobin A1c were measured from venous samples at baseline and at follow-up. Median values were used as cut points for high cold-induced BAT activity (BAT glucose uptake >2.40 µmoL/100 g per minute and perfusion >8.4 mL/100 g per minute). Baseline cold-induced BAT glucose uptake and perfusion correlated directly with carotid distensibility and inversely with mean bulbus intima-media thickness and maximum intima-media thickness (P always ≤0.02). Baseline body mass index, plasma triglycerides, and HbA1c correlated negatively with BAT glucose uptake and perfusion in cold (P always ≤0.048). Correlations between cold-induced BAT activity, cardiovascular risk factors, and atherosclerosis were attenuated with corrections for multiple comparisons. CONCLUSIONS: Cold-induced BAT activity at baseline seems to correlate with lower levels of conventional cardiovascular risk factors at baseline and with lower carotid intima-media thickness and higher carotid elasticity at 5-year follow-up.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Enfermedades de las Arterias Carótidas/etiología , Metabolismo Energético , Tejido Adiposo Pardo/diagnóstico por imagen , Adulto , Enfermedades Asintomáticas , Glucemia/metabolismo , Índice de Masa Corporal , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/metabolismo , Grosor Intima-Media Carotídeo , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Hemoglobina Glucada/metabolismo , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Pronóstico , Radiofármacos/administración & dosificación , Factores de Riesgo , Factores de Tiempo
9.
Eur J Nucl Med Mol Imaging ; 46(3): 743-750, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30105585

RESUMEN

PURPOSE: Brown adipose tissue (BAT) has emerged as a potential target to combat obesity and diabetes, but novel strategies to activate BAT are needed. Adenosine and A2A receptor (A2AR) agonism activate BAT in rodents, and endogenous adenosine is released locally in BAT as a by-product of noradrenaline, but physiological data from humans is lacking. The purpose of this pilot study was to investigate the effects of exogenous adenosine on human BAT perfusion, and to determine the density of A2ARs in human BAT in vivo for the first time, using PET/CT imaging. METHODS: Healthy, lean men (n = 10) participated in PET/CT imaging with two radioligands. Perfusion of BAT, white adipose tissue (WAT) and muscle was quantified with [15O]H2O at baseline, during cold exposure and during intravenous administration of adenosine. A2AR density of the tissues was quantified with [11C]TMSX at baseline and during cold exposure. RESULTS: Adenosine increased the perfusion of BAT even more than cold exposure (baseline 8.3 ± 4.5, cold 19.6 ± 9.3, adenosine 28.6 ± 7.9 ml/100 g/min, p < 0.01). Distribution volume of [11C]TMSX in BAT was significantly lower during cold exposure compared to baseline. In cold, low [11C]TMSX binding coincided with high concentrations of noradrenaline. CONCLUSIONS: Adenosine administration caused a maximal perfusion effect in human supraclavicular BAT, indicating increased oxidative metabolism. Cold exposure increased noradrenaline concentrations and decreased the density of A2AR available for radioligand binding in BAT, suggesting augmented release of endogenous adenosine. Our results show that adenosine and A2AR are relevant for activation of human BAT, and A2AR provides a future target for enhancing BAT metabolism.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Radioisótopos de Oxígeno , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptor de Adenosina A2A/metabolismo , Agua , Xantinas , Adenosina/farmacología , Tejido Adiposo Pardo/irrigación sanguínea , Tejido Adiposo Pardo/efectos de los fármacos , Adolescente , Adulto , Frío , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Femenino , Humanos , Masculino , Norepinefrina/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Adulto Joven
10.
Handb Exp Pharmacol ; 251: 349-357, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30141098

RESUMEN

Brown adipose tissue activation occurs most effectively by cold exposure. In the modern world, we do not spend long periods in cold environment, and eating and meals may be other activators of brown fat function. Short-term regulation of brown fat functional activity by eating involves most importantly insulin. Insulin is capable to increase glucose uptake in human brown adipose tissue fivefold to fasting conditions. Oxidative metabolism in brown fat is doubled both by cold and by a meal. Human brown adipose tissue is an insulin-sensitive tissue type, and insulin resistance impairs the function, as is found in obesity. Body weight reduction improves cold-induced activation of human brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo , Glucosa/metabolismo , Resistencia a la Insulina , Tejido Adiposo Pardo/metabolismo , Frío , Metabolismo Energético , Humanos , Insulina
11.
Diabetologia ; 61(8): 1817-1828, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29717337

RESUMEN

AIMS/HYPOTHESIS: Pancreatic fat accumulation may contribute to the development of beta cell dysfunction. Exercise training improves whole-body insulin sensitivity, but its effects on pancreatic fat content and beta cell dysfunction are unclear. The aim of this parallel-group randomised controlled trial was to evaluate the effects of exercise training on pancreatic fat and beta cell function in healthy and prediabetic or type 2 diabetic participants and to test whether the responses were similar regardless of baseline glucose tolerance. METHODS: Using newspaper announcements, a total of 97 sedentary 40-55-year-old individuals were assessed for eligibility. Prediabetes (impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes were defined by ADA criteria. Of the screened candidates, 28 healthy men and 26 prediabetic or type 2 diabetic men and women met the inclusion criteria and were randomised into 2-week-long sprint interval or moderate-intensity continuous training programmes in a 1:1 allocation ratio using random permuted blocks. The primary outcome was pancreatic fat, which was measured by magnetic resonance spectroscopy. As secondary outcomes, beta cell function was studied using variables derived from OGTT, and whole-body insulin sensitivity and pancreatic fatty acid and glucose uptake were measured using positron emission tomography. The measurements were carried out at the Turku PET Centre, Finland. The analyses were based on an intention-to-treat principle. Given the nature of the intervention, blinding was not applicable. RESULTS: At baseline, the group of prediabetic or type 2 diabetic men had a higher pancreatic fat content and impaired beta cell function compared with the healthy men, while glucose and fatty acid uptake into the pancreas was similar. Exercise training decreased pancreatic fat similarly in healthy (from 4.4% [3.0%, 6.1%] to 3.6% [2.4%, 5.2%] [mean, 95% CI]) and prediabetic or type 2 diabetic men (from 8.7% [6.0%, 11.9%] to 6.7% [4.4%, 9.6%]; p = 0.036 for time effect) without any changes in pancreatic substrate uptake (p ≥ 0.31 for time effect in both insulin-stimulated glucose and fasting state fatty acid uptake). In prediabetic or type 2 diabetic men and women, both exercise modes similarly improved variables describing beta cell function. CONCLUSIONS/INTERPRETATION: Two weeks of exercise training improves beta cell function in prediabetic or type 2 diabetic individuals and decreases pancreatic fat regardless of baseline glucose tolerance. This study shows that short-term training efficiently reduces ectopic fat within the pancreas, and exercise training may therefore reduce the risk of type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT01344928 FUNDING: This study was funded by the Emil Aaltonen Foundation, the European Foundation for the Study of Diabetes, the Finnish Diabetes Foundation, the Orion Research Foundation, the Academy of Finland (grants 251399, 256470, 281440, and 283319), the Ministry of Education of the State of Finland, the Paavo Nurmi Foundation, the Novo Nordisk Foundation, the Finnish Cultural Foundation, the Hospital District of Southwest Finland, the Turku University Foundation, and the Finnish Medical Foundation.


Asunto(s)
Tejido Adiposo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Resistencia a la Insulina , Estado Prediabético/metabolismo , Adulto , Antropometría , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Células Secretoras de Insulina/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Páncreas/metabolismo , Resultado del Tratamiento
12.
Eur J Nucl Med Mol Imaging ; 45(12): 2244, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30196366

RESUMEN

The original version of this article contained a mistake in the first sentence of the Results section of the Abstract.

13.
Diabetes Obes Metab ; 20(5): 1280-1288, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29377423

RESUMEN

OBJECTIVE: We aimed to investigate the effect of bariatric surgery on lipid metabolism in supraclavicular brown adipose tissue in morbidly obese women. We hypothesized that lipid metabolism improves after surgery-induced weight loss. MATERIALS AND METHODS: A total of 23 morbidly obese women (BMI, 42.1 ± 4.2 kg/m2 ; age, 43.8 ± 9.8 years) were assessed before and 6 months after bariatric surgery and 15 age- and sex-matched controls (22.6 ± 2.8 kg/m2 ) were assessed once. In the supraclavicular fat depot, fractional (FUR) and NEFA uptake rates were measured with 18 F-FTHA-PET. We assessed tissue morphology (triglyceride content) using computed tomography (CT)-radiodensity (in Hounsfield Units[HU]) and the proportion of fat with high density (sBAT [%]) in the entire supraclavicular fat depot. RESULTS: The supraclavicular fractional uptake rate was lower in obese women compared to controls (0.0055 ± 0.0035 vs 0.0161 ± 0.0177 1/min, P = .001). Both FUR (to 0.0074 ± 0.0035 1/min, P = .01) and NEFA uptake rates (to 0.50 ± 0.50 µmol/100 g/min, P = .001) increased after surgery. Compared to controls, obese women had lower CT-radiodensity (-101.2 ± 10.1 vs -82.5 ± 5.8 HU, P < .001) and sBAT (43.4 ± 8.4% vs 64.5 ± 12.4%, P < .001). After surgery, CT-radiodensity increased (to -82.5 ± 9.6 HU, P < .001), signifying decreased triglyceride content and sBAT improved (to 58.0 ± 10.7%, P < .001), indicating an increased proportion of brown fat. The change in tissue morphology, reflected as increase in CT-radiodensity and sBAT (%), was associated with a decrease in adiposity indices and an increase in whole-body insulin sensitivity. CONCLUSIONS: A decrease in triglyceride content, coupled with the increased proportion of brown adipose tissue in the supraclavicular fat depot, may play a role in the improvement of whole-body insulin sensitivity observed in morbidly obese women after surgery-induced weight loss.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Cirugía Bariátrica , Metabolismo Energético , Resistencia a la Insulina , Metabolismo de los Lípidos , Obesidad Mórbida/metabolismo , Obesidad Mórbida/cirugía , Absorción Fisiológica , Tejido Adiposo Pardo/diagnóstico por imagen , Adiposidad , Adulto , Índice de Masa Corporal , Clavícula , Ácidos Grasos no Esterificados/metabolismo , Femenino , Radioisótopos de Flúor , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Obesidad Mórbida/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Triglicéridos/metabolismo , Pérdida de Peso , Imagen de Cuerpo Entero
14.
Diabetes Obes Metab ; 20(4): 963-973, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29206339

RESUMEN

AIMS: To study myocardial substrate uptake, structure and function, before and after bariatric surgery, to clarify the interaction between myocardial metabolism and cardiac remodelling in morbid obesity. METHODS: We studied 46 obese patients (age 44 ± 10 years, body mass index [BMI] 42 ± 4 kg/m2 ), including 18 with type 2 diabetes (T2D) before and 6 months after bariatric surgery and 25 healthy age-matched control group subjects. Myocardial fasting free fatty acid uptake (MFAU) and insulin-stimulated myocardial glucose uptake (MGU) were measured using positron-emission tomography. Myocardial structure and function, and myocardial triglyceride content (MTGC) and intrathoracic fat were measured using magnetic resonance imaging and magnetic resonance spectroscopy. RESULTS: The morbidly obese study participants, with or without T2D, had cardiac hypertrophy, impaired myocardial function and substrate metabolism compared with the control group. Surgery led to marked weight reduction and remission of T2D in most of the participants. Postoperatively, myocardial function and structure improved and myocardial substrate metabolism normalized. Intrathoracic fat, but not MTGC, was reduced. Before surgery, BMI and MFAU correlated with left ventricular hypertrophy, and BMI, age and intrathoracic fat mass were the main variables associated with cardiac function. The improvement in whole-body insulin sensitivity correlated positively with the increase in MGU and the decrease in MFAU. CONCLUSIONS: In the present study, obesity and age, rather than myocardial substrate uptake, were the causes of cardiac remodelling in morbidly obese patients with or without T2D. Cardiac remodelling and impaired myocardial substrate metabolism are reversible after surgically induced weight loss and amelioration of T2D.


Asunto(s)
Remodelación Atrial/fisiología , Cirugía Bariátrica/rehabilitación , Miocardio/metabolismo , Obesidad Mórbida/cirugía , Remodelación Ventricular/fisiología , Adulto , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/cirugía , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/complicaciones , Obesidad Mórbida/metabolismo , Obesidad Mórbida/fisiopatología , Recuperación de la Función
15.
Diabetes Obes Metab ; 19(10): 1379-1388, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28318098

RESUMEN

AIMS: To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity. PARTICIPANTS AND METHODS: Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m2 [95% CI 24.1-26.3], peak oxygen uptake (VO2peak ) 34.8 mL/kg/min [95% CI 32.1, 37.4] ) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[18 F]flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions. RESULTS: Training improved VO2peak (P = .0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P = .0009) and femoral subcutaneous WAT (P = .02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (>2.9 µmol/100 g/min; n = 6) or low BAT (<2.9 µmol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P = .02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] µmol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group. CONCLUSIONS: Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Ejercicio Físico/fisiología , Glucosa/farmacocinética , Insulina/farmacología , Adulto , Ácidos Grasos no Esterificados/metabolismo , Salud , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología
17.
Eur J Nucl Med Mol Imaging ; 43(10): 1878-86, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26993316

RESUMEN

PURPOSE: Brown adipose tissue (BAT) is considered a potential target for combatting obesity, as it produces heat instead of ATP in cellular respiration due to uncoupling protein-1 (UCP-1) in mitochondria. However, BAT-specific thermogenic capacity, in comparison to whole-body thermogenesis during cold stimulus, is still controversial. In our present study, we aimed to determine human BAT oxygen consumption with [(15)O]O2 positron emission tomography (PET) imaging. Further, we explored whether BAT-specific energy expenditure (EE) is associated with BAT blood flow, non-esterified fatty acid (NEFA) uptake, and whole-body EE. METHODS: Seven healthy study subjects were studied at two different scanning sessions, 1) at room temperature (RT) and 2) with acute cold exposure. Radiotracers [(15)O]O2, [(15)O]H2O, and [(18)F]FTHA were given for the measurements of BAT oxygen consumption, blood flow, and NEFA uptake, respectively, with PET-CT. Indirect calorimetry was performed to assess differences in whole-body EE between RT and cold. RESULTS: BAT-specific EE and oxygen consumption was higher during cold stimulus (approx. 50 %); similarly, whole-body EE was higher during cold stimulus (range 2-47 %). However, there was no association in BAT-specific EE and whole-body EE. BAT-specific EE was found to be a minor contributor in cold induced whole-body thermogenesis (almost 1 % of total whole-body elevation in EE). Certain deep muscles in the cervico-thoracic region made a major contribution to this cold-induced thermogenesis (CIT) without any visual signs or individual perception of shivering. Moreover, BAT-specific EE associated with BAT blood flow and NEFA uptake both at RT and during cold stimulus. CONCLUSION: Our study suggests that BAT is a minor and deep muscles are a major contributor to CIT. In BAT, both in RT and during cold, cellular respiration is linked with circulatory NEFA uptake.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/fisiología , Respuesta al Choque por Frío/fisiología , Consumo de Oxígeno/fisiología , Tomografía de Emisión de Positrones/métodos , Termogénesis/fisiología , Adulto , Frío , Femenino , Humanos , Masculino , Radioisótopos de Oxígeno , Radiofármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Duodecim ; 131(22): 2075-82, 2015.
Artículo en Fi | MEDLINE | ID: mdl-26749900

RESUMEN

Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Canales Iónicos/fisiología , Proteínas Mitocondriales/fisiología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Adulto , Metabolismo Energético , Humanos , Cuello , Tomografía de Emisión de Positrones , Proteína Desacopladora 1
20.
Biochim Biophys Acta ; 1831(5): 1004-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23274235

RESUMEN

Human adults have functionally active BAT. The metabolic function can be reliably measured in vivo using modern imaging modalities (namely PET/CT). Cold seems to be one of the most potent stimulators of BAT metabolic activity but other stimulators (for example insulin) are actively studied. Obesity is related to lower metabolic activity of BAT but it may be reversed after successful weight reduction such as after bariatric surgery. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Insulina/metabolismo , Metabolismo de los Lípidos , Tejido Adiposo Pardo/patología , Adulto , Humanos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Fenotipo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA