Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 183(4): 1058-1069.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058755

RESUMEN

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/metabolismo , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/uso terapéutico , Reacciones Antígeno-Anticuerpo , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cricetinae , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Cinética , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Mol Ther ; 31(8): 2391-2407, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37263272

RESUMEN

Live attenuated vaccines (LAVs) administered via the mucosal route may offer better control of the COVID-19 pandemic than non-replicating vaccines injected intramuscularly. Conceptionally, LAVs have several advantages, including presentation of the entire antigenic repertoire of the virus, and the induction of strong mucosal immunity. Thus, immunity induced by LAV could offer superior protection against future surges of COVID-19 cases caused by emerging SARS-CoV-2 variants. However, LAVs carry the risk of unintentional transmission. To address this issue, we investigated whether transmission of a SARS-CoV-2 LAV candidate can be blocked by removing the furin cleavage site (FCS) from the spike protein. The level of protection and immunity induced by the attenuated virus with the intact FCS was virtually identical to the one induced by the attenuated virus lacking the FCS. Most importantly, removal of the FCS completely abolished horizontal transmission of vaccine virus between cohoused hamsters. Furthermore, the vaccine was safe in immunosuppressed animals and showed no tendency to recombine in vitro or in vivo with a SARS-CoV-2 field strain. These results indicate that removal of the FCS from SARS-CoV-2 LAV is a promising strategy to increase vaccine safety and prevent vaccine transmission without compromising vaccine efficacy.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Humanos , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Vacunas Atenuadas , Anticuerpos Antivirales , Anticuerpos Neutralizantes
4.
Vaccines (Basel) ; 12(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543882

RESUMEN

During the COVID-19 pandemic, the early emergence of viral variants repeatedly undermined the effects of vaccination. Our aim here is to explore strategies for improving spike vaccine gene antigenicity by merging mutations from different variants of concern (VOCs) in a single vaccine gene. To this end, newly developed recombinant vaccine genes were designed, cloned into adenoviral vectors, and applied to C57BL/6 mice; then, serum-neutralizing antibodies against the wildtype SARS-CoV-2 strains were determined in neutralization assays. The merger of mutations from different variants of concern (alpha, beta, gamma, and delta) in a single recombinant spike-based vaccine gene provided a substantial improvement in neutralizing immunity to all variants of concern, including the omicron strains. To date, only unmodified spike genes of the original SARS-CoV-2 Wuhan strain (B.1) or dominant variants (BA.1, BA.5, and XBB.1.5) have been used as vaccine genes. The employment of unmodified vaccine genes is afflicted by limited cross-protection among variant strains. In contrast, recombinant vaccine genes that combine mutations from different strains in a single gene hold the potential to broaden and improve immune protection and might help to reduce the need for frequent vaccine adaptations in the future.

5.
Nat Commun ; 15(1): 995, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307868

RESUMEN

The development of effective SARS-CoV-2 vaccines has been essential to control COVID-19, but significant challenges remain. One problem is intramuscular administration, which does not induce robust mucosal immune responses in the upper airways-the primary site of infection and virus shedding. Here we compare the efficacy of a mucosal, replication-competent yet fully attenuated virus vaccine, sCPD9-ΔFCS, and the monovalent mRNA vaccine BNT162b2 in preventing transmission of SARS-CoV-2 variants B.1 and Omicron BA.5 in two scenarios. Firstly, we assessed the protective efficacy of the vaccines by exposing vaccinated male Syrian hamsters to infected counterparts. Secondly, we evaluated transmission of the challenge virus from vaccinated and subsequently challenged male hamsters to naïve contacts. Our findings demonstrate that the live-attenuated vaccine (LAV) sCPD9-ΔFCS significantly outperformed the mRNA vaccine in preventing virus transmission in both scenarios. Our results provide evidence for the advantages of locally administered LAVs over intramuscularly administered mRNA vaccines in preventing infection and reducing virus transmission.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Cricetinae , Masculino , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas de ARNm , SARS-CoV-2 , Mesocricetus , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
Front Immunol ; 14: 1166765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520530

RESUMEN

Introduction: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods: We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results: Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion: PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.


Asunto(s)
COVID-19 , Vacunas Virales , Cricetinae , Humanos , Animales , Ratones , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Epítopos de Linfocito T , Administración Intranasal , Anticuerpos Neutralizantes , Antígenos HLA-A
7.
Transbound Emerg Dis ; 68(3): 1075-1079, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32946664

RESUMEN

The SARS-CoV-2 pandemic has caused a yet unresolved global crisis. Effective medical intervention by vaccination or therapy seems to be the only possibility to control the pandemic. In this context, animal models are an indispensable tool for basic and applied research to combat SARS-CoV-2 infection. Here, we established a SARS-CoV-2 infection model in Chinese hamsters suitable for studying pathogenesis of the disease as well as pre-clinical testing of vaccines and therapies. This species of hamster is susceptible to SARS-CoV-2 infection as demonstrated by robust virus replication in the upper and lower respiratory tract accompanied by bronchitis and pneumonia as well as significant body weight loss following infection. The Chinese hamster features advantages compared to the Syrian hamster model, including more pronounced clinical symptoms, its small size, well-characterized genome, transcriptome and translatome data and availability of molecular tools.


Asunto(s)
COVID-19/veterinaria , Modelos Animales de Enfermedad , SARS-CoV-2 , Animales , COVID-19/patología , Cricetinae , Cricetulus , Susceptibilidad a Enfermedades/patología , Susceptibilidad a Enfermedades/veterinaria , Humanos , Pulmón/patología , Pulmón/virología , Replicación Viral
8.
Transbound Emerg Dis ; 68(2): 931-940, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32745334

RESUMEN

This report describes an outbreak of Elizabethkingia miricola in northern leopard frogs (Lithobates pipiens) and three other species of frogs and toads held in captivity in Germany. The authors examine several treatment options and underline the difficulties in treating larger numbers of individuals with antimicrobials applied through bathing. Whole genome sequencing of three bacterial isolates emphasizes their relatedness to other frog isolates and leads us to conclude that E. miricola is an emerging and difficult to treat pathogen with a broad host range across anuran species. Moreover, ambiguities in identification of flavobacteria associated with disease in frogs reported in the literature make it seem possible that E. miricola has been overlooked as an anuran pathogen in the past.


Asunto(s)
Anuros/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacteriaceae , Animales , Brotes de Enfermedades/veterinaria , Infecciones por Flavobacteriaceae/epidemiología , Alemania/epidemiología
9.
EMBO Mol Med ; 13(4): e13191, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33544398

RESUMEN

SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-γ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection, and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-γ-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission.


Asunto(s)
COVID-19/etiología , Interferón gamma/inmunología , Modelos Inmunológicos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/patología , Diferenciación Celular/inmunología , Colon/inmunología , Colon/patología , Colon/virología , Susceptibilidad a Enfermedades , Enterocitos/metabolismo , Enterocitos/patología , Enterocitos/virología , Expresión Génica , Interacciones Microbiota-Huesped/inmunología , Humanos , Interferón gamma/administración & dosificación , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Ratones , Organoides/inmunología , Organoides/patología , Organoides/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Replicación Viral/inmunología
10.
Viruses ; 13(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34835096

RESUMEN

With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/inmunología , Cricetinae , Femenino , Inflamación , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología
11.
Cell Rep ; 36(5): 109493, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34320400

RESUMEN

Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/inmunología , COVID-19/prevención & control , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Animales , Chlorocebus aethiops , Edición Génica , Genoma Viral , Humanos , Inmunidad , Mesocricetus , Mutación , Pandemias/prevención & control , Vacunas Atenuadas , Células Vero , Replicación Viral
12.
Nat Commun ; 12(1): 4869, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381043

RESUMEN

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Células Epiteliales Alveolares/inmunología , Animales , Cricetinae , Citocinas/genética , Citocinas/inmunología , Células Endoteliales/inmunología , Humanos , Inmunoglobulina M/inmunología , Inflamación , Pulmón/inmunología , Macrófagos/inmunología , Mesocricetus , Monocitos/inmunología , SARS-CoV-2/inmunología , Transducción de Señal , Linfocitos T Citotóxicos/inmunología , Receptores Toll-Like/inmunología
13.
Viruses ; 12(7)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698441

RESUMEN

In late 2019, an outbreak of a severe respiratory disease caused by an emerging coronavirus, SARS-CoV-2, resulted in high morbidity and mortality in infected humans. Complete understanding of COVID-19, the multi-faceted disease caused by SARS-CoV-2, requires suitable small animal models, as does the development and evaluation of vaccines and antivirals. Since age-dependent differences of COVID-19 were identified in humans, we compared the course of SARS-CoV-2 infection in young and aged Syrian hamsters. We show that virus replication in the upper and lower respiratory tract was independent of the age of the animals. However, older hamsters exhibited more pronounced and consistent weight loss. In situ hybridization in the lungs identified viral RNA in bronchial epithelium, alveolar epithelial cells type I and II, and macrophages. Histopathology revealed clear age-dependent differences, with young hamsters launching earlier and stronger immune cell influx than aged hamsters. The latter developed conspicuous alveolar and perivascular edema, indicating vascular leakage. In contrast, we observed rapid lung recovery at day 14 after infection only in young hamsters. We propose that comparative assessment in young versus aged hamsters of SARS-CoV-2 vaccines and treatments may yield valuable information, as this small-animal model appears to mirror age-dependent differences in human patients.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/etiología , Modelos Animales de Enfermedad , Neumonía Viral/etiología , Factores de Edad , Animales , Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , COVID-19 , Cricetinae , Progresión de la Enfermedad , Femenino , Pulmón/virología , Masculino , Mesocricetus , Pandemias , ARN Viral/análisis , SARS-CoV-2 , Vacunas Virales/inmunología
14.
Cell Rep ; 33(10): 108488, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33271063

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated an unprecedented and yet-unresolved health crisis worldwide. Different mammals are susceptible to SARS-CoV-2; however, few species examined so far develop robust clinical disease that mirrors severe human cases or allows testing of vaccines and drugs under conditions of severe disease. Here, we compare the susceptibilities of three dwarf hamster species (Phodopus spp.) to SARS-CoV-2 and introduce the Roborovski dwarf hamster (P. roborovskii) as a highly susceptible COVID-19 model with consistent and fulminant clinical signs. Particularly, only this species shows SARS-CoV-2-induced severe acute diffuse alveolar damage and hyaline microthrombi in the lungs, changes described in patients who succumbed to the infection but not reproduced in any experimentally infected animal. Based on our findings, we propose the Roborovski dwarf hamster as a valuable model to examine the efficacy and safety of vaccine candidates and therapeutics, particularly for use in highly susceptible individuals.


Asunto(s)
COVID-19/virología , Modelos Animales de Enfermedad , Pulmón/virología , Phodopus/virología , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/patología , COVID-19/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Alveolos Pulmonares/fisiopatología , Alveolos Pulmonares/virología , SARS-CoV-2/genética
15.
bioRxiv ; 2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817952

RESUMEN

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 A revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA