Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 17(6): 2189-98, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27183396

RESUMEN

This study aims to design an optimal polyelectrolyte multilayer film of poly-l-lysine (PLL) and hyaluronic acid (HA) as an anti-inflammatory cytokine release system in order to decrease the implant failure due to any immune reactions. The chemical modification of the HA with aldehyde moieties allows self-cross-linking of the film and an improvement in the mechanical properties of the film. The cross-linking of the film and the release of immunomodulatory cytokine (IL-4) stimulate the differentiation of primary human monocytes seeded on the films into pro-healing macrophages phenotype. This induces the production of anti-inflammatory cytokines (IL1-RA and CCL18) and the decrease of pro-inflammatory cytokines secreted (IL-12, TNF-α, and IL-1ß). Moreover, we demonstrate that cross-linking PLL/HA film using HA-aldehyde is already effective by itself to limit inflammatory processes. Finally, this functionalized self-cross-linked PLL/HA-aldehyde films constitutes an innovative and efficient candidate for immunomodulation of any kind of implants of various architecture and properties.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Citocinas/administración & dosificación , Ácido Hialurónico/química , Inmunomodulación/efectos de los fármacos , Inflamación/tratamiento farmacológico , Polielectrolitos/química , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/química , Humanos , Inflamación/inmunología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Propiedades de Superficie
2.
Langmuir ; 30(22): 6479-88, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24821198

RESUMEN

Step-by-step polymer film buildup processes lead to polymer coatings, e.g., polyelectrolyte multilayers, of various structures ranging from continuous smooth films to droplet like discontinuous coatings. Yet, the origin of these different behaviors depending upon the system is not yet known. This study is a first attempt to rationalize the evolution of the coating structure as a function of the strength of the interactions between the polymers constituting the film. We investigated the influence of the strength of noncovalent host-guest interactions between cyclodextrin (CD) and pyrene (Py), ferrocene (Fc) or adamantane (Ad) on the structure of neutral poly(N-hydroxypropylmethacrylamide) (PHPMA) multilayers films formed in a step-by-step manner. In solution, the strength of the inclusion complex (measured by log K where K is the complex association constant) is increasing in the order Py/ß-CD < Fc/ß-CD < Ad/ß-CD and can be further varied in the presence of different sodium salts at different ionic strengths. Depending upon this strength, the buildup process is limited to the formation of isolated aggregates for PHPMA-CD/PHPMA-Py, leading to smooth continuous films for PHPMA-CD/PHPMA-Fc and to droplet-like films, not entirely covering the substrate, for PHPMA-CD/PHPMA-Ad. To study the influence of the strength of the host-guest interactions on the film topography, PHPMA-CD/PHPMA-Fc films were built in the presence of different sodium salts at different ionic strengths. For low host-guest interactions, only isolated aggregates are formed on the substrate. As the strength of the host-guest interactions increases (increase of log K), the formed films go through a droplet-like structure, before becoming continuous but rough for stronger interactions. When the interaction strength is further increased, the roughness of the films decreases, leading to a smooth continuous film before becoming rough again at still higher interaction strength. Smooth continuous multilayers seem thus to be obtained for an optimal range of the interaction strength.


Asunto(s)
Membranas Artificiales , Polímeros/química , Adamantano/química , Ciclodextrinas/química , Compuestos Ferrosos/química , Metalocenos , Ácidos Polimetacrílicos/química , Pirenos/química
3.
Langmuir ; 29(24): 7488-98, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23346932

RESUMEN

The identification and quantification of biomarkers or proteins is a real challenge in allowing the early detection of diseases. The functionalization of the biosensor surface has to be properly designed to prevent nonspecific interactions and to detect the biomolecule of interest specifically. A multilayered nanoarchitecture, based on polyelectrolyte multilayers (PEM) and the sequential immobilization of streptavidin and a biotinylated antibody, was elaborated as a promising platform for the label-free sensing of targeted proteins. We choose ovalbumin as an example. Thanks to the versatility of PEM films, the platform was built on two types of sensor surface and was evaluated using both optical- and viscoelastic-based techniques, namely, optical waveguide lightmode spectroscopy and the quartz crystal microbalance, respectively. A library of biotinylated poly(acrylic acids) (PAAs) was synthesized by grafting biotin moieties at different grafting ratios (GR). The biotin moieties were linked to the PAA chains through ethylene oxide (EO) spacers of different lengths. The adsorption of the PAA-EOn-biotin (GR) layer on a PEM precursor film allows tuning the surface density in biotin and thus the streptavidin adsorption mainly through the grafting ratio. The nonspecific adsorption of serum was reduced and even suppressed depending on the length of the EO arms. We showed that to obtain an antifouling polyelectrolyte the grafting of EO9 or EO19 chains at 25% in GR is sufficient. Thus, the spacer has a dual role: ensuring the antifouling property and allowing the accessibility of biotin moieties. Finally, an optimized platform based on the PAA-EO9-biotin (25%)/streptavidin/biotinylated-antibody architecture was built and demonstrated promising performance as interface architecture for bioaffinity sensing of a targeted protein, in our case, ovalbumin.


Asunto(s)
Técnicas Biosensibles , Óxido de Etileno/química , Nanoestructuras , Proteínas/química , Adsorción
4.
Langmuir ; 29(34): 10776-84, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23895332

RESUMEN

The design of films using a one-pot process has recently attracted increasing interest in the field of polymer thin film formation. Herein we describe the preparation of one-pot supramolecular polyrotaxane (PRX) films using the morphogen-driven self-construction process. This one-pot buildup strategy where the film growth is triggered by the electrochemical formation and diffusion of a catalyst in close vicinity of the substrate has recently been introduced by our group. A one-pot mixture was used that contained (i) poly(acrylic acid) (PAA) functionalized by azide groups grafted on the polymer chain through oligo(ethylene glycol) (EG) arms, leading to PAA-EG13-N3, (ii) cyclodextrins (α and ß CD), as macrocycles that can be threaded along EG arms, (iii) alkyne-functionalized stoppers (ferrocene or adamantane), to cap the PRX assembly by click chemistry, and (iv) copper sulfate. The one-pot mixture solution was brought into contact with a gold electrode. Cu(I), the morphogen, was generated electrochemically from Cu(II) at the electrode/one-pot solution interface. This electrotriggered click reaction leads to the capping of polypseudorotaxane yielding to PRXs. The PRXs can self-assemble through lateral supramolecular interactions to form aggregates and ensure the cohesion of the film. The film buildup was investigated using different types of CD and alkyne functionalized stoppers. Supramolecular PRX aggregates were characterized by X-ray diffraction measurements. The film topographies were imaged by atomic force microscopy. The influence of the concentration in CD and the presence of a competitor were studied as well. The stability of the resulting film was tested in contact with 8 M urea and during the electrochemical oxidation of ferrocene.


Asunto(s)
Ciclodextrinas/química , Electroquímica/métodos , Poloxámero/química , Rotaxanos/química , Química Clic , Electrodos , Microscopía de Fuerza Atómica , Estructura Molecular
5.
Langmuir ; 29(47): 14536-44, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24171660

RESUMEN

Simultaneous spraying of polyelectrolytes and small multicharged molecules of opposite charges onto a vertical substrate leads to continuous buildups of organic films. Here, we investigate the rules governing the buildup of two such systems: poly(allylamine hydrochloride)/sodium citrate (PAH/citrate) and PAH/sulfated α-cyclodextrin (PAH/CD-S). Special attention is paid to the film growth rate as a function of the spraying rate ratio of the two constituents. This parameter was varied by increasing the spraying rate of one of the constituents while maintaining constant that of the other. For PAH/CD-S systems, whatever the constituent (PAH or CD-S) whose spraying rate was kept fixed, the film growth rate first increases and passes through a maximum before decreasing when the spraying rate of the other constituent is increased. For PAH/citrate, the film growth rate reaches a plateau value when the spraying rate of citrate is increased while that of PAH is maintained constant, whereas when the spraying rate of citrate is maintained constant and that of PAH is increased, a behavior similar to that of PAH/CD-S is observed. The composition of PAH/CD-S sprayed films determined by X-ray photoelectron spectroscopy is independent of the spraying rate ratio of the two constituents and corresponds to one allylamine for one sulfate group. For PAH/citrate, by increasing the PAH/citrate spraying rate ratio, the carboxylic/nitrogen ratio in the film increases and tends to 1. There is thus always a deficit of carboxylic groups (COO(-) + COOH) with respect to amines (NH2 + NH3(+)). Yet, the ratio (COO(-)/NH3(+)) is always close to 1, ensuring exact charge compensation. The film morphology determined by atomic force microscopy is granular for PAH/CD-S and is smooth and liquid-like for PAH/citrate. A model based on strong (respectively weak) interactions between PAH and CD-S (respectively citrate) is proposed to explain these features.

6.
J Am Chem Soc ; 134(1): 83-6, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22188330

RESUMEN

Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion.


Asunto(s)
Mecanotransducción Celular , Polímeros/química , Biomimética , Adhesión Celular , Electrólitos/química , Fibroblastos/citología , Oligopéptidos/química , Propiedades de Superficie
7.
J Cell Sci ; 123(Pt 1): 29-39, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20016064

RESUMEN

Actin cytoskeleton forms a physical connection between the extracellular matrix, adhesion complexes and nuclear architecture. Because tissue stiffness plays key roles in adhesion and cytoskeletal organization, an important open question concerns the influence of substrate elasticity on replication and transcription. To answer this major question, polyelectrolyte multilayer films were used as substrate models with apparent elastic moduli ranging from 0 to 500 kPa. The sequential relationship between Rac1, vinculin adhesion assembly, and replication becomes efficient at above 200 kPa because activation of Rac1 leads to vinculin assembly, actin fiber formation and, subsequently, to initiation of replication. An optimal window of elasticity (200 kPa) is required for activation of focal adhesion kinase through auto-phosphorylation of tyrosine 397. Transcription, including nuclear recruitment of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), occurred above 50 kPa. Actin fiber and focal adhesion signaling are not required for transcription. Above 50 kPa, transcription was correlated with alphav-integrin engagement together with histone H3 hyperacetylation and chromatin decondensation, allowing little cell spreading. By contrast, soft substrate (below 50 kPa) promoted morphological changes characteristic of apoptosis, including cell rounding, nucleus condensation, loss of focal adhesions and exposure of phosphatidylserine at the outer cell surface. On the basis of our data, we propose a selective and uncoupled contribution from the substrate elasticity to the regulation of replication and transcription activities for an epithelial cell model.


Asunto(s)
Células Epiteliales/fisiología , Adhesiones Focales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Apoptosis , Adhesión Celular/fisiología , Línea Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina , Elasticidad , Células Epiteliales/patología , Adhesiones Focales/química , Histonas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Películas Cinematográficas/estadística & datos numéricos , Ratas , Activación Transcripcional , Vinculina/metabolismo
8.
Langmuir ; 28(38): 13550-4, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22957730

RESUMEN

The design of stimuli-responsive polymer assemblies for the controlled release of bioactive molecules has raised considerable interest these two last decades. Herein, we report the design of mechanically responsive drug-releasing films made of polyelectrolyte multilayers. A layer-by-layer (LbL) reservoir containing biodegradable polyelectrolytes is capped with a mechanosensitive LbL barrier and responds to stretching by a total enzymatic degradation of the film. This strategy is successfully applied for the release in solution of an anticancer drug initially loaded within the architecture.


Asunto(s)
Antineoplásicos Fitogénicos/metabolismo , Membranas Artificiales , Paclitaxel/metabolismo , Polímeros/metabolismo , Antineoplásicos Fitogénicos/química , Electrólitos/química , Electrólitos/metabolismo , Conformación Molecular , Paclitaxel/química , Polímeros/química , Estrés Mecánico
9.
Biomacromolecules ; 13(7): 2128-35, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22662909

RESUMEN

Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.


Asunto(s)
Materiales Biocompatibles/síntesis química , Reactivos de Enlaces Cruzados/química , Colágenos Fibrilares/química , Iridoides/química , Alginatos/química , Materiales Biocompatibles/química , Adhesión Celular , Proliferación Celular , Forma de la Célula , Células Cultivadas , Ácido Glucurónico/química , Glutaral/química , Ácidos Hexurónicos/química , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Nanofibras/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Andamios del Tejido/química
10.
Proc Natl Acad Sci U S A ; 105(42): 16320-5, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18922784

RESUMEN

Gene silencing by RNA interference (RNAi) has been shown to represent a recently discovered approach for the treatment of human diseases, including viral infection. A major limitation for the success of therapeutic strategies based on RNAi has been the delivery and shortlasting action of synthetic RNA. Multilayered polyelectrolyte films (MPFs), consisting of alternate layer-by-layer deposition of polycations and polyanions, have been shown to represent an original approach for the efficient delivery of DNA and proteins to target cells. Using hepatitis C virus infection (HCV) as a model, we demonstrate that siRNAs targeting the viral genome are efficiently delivered by MPFs. This delivery method resulted in a marked, dose-dependent, specific, and sustained inhibition of HCV replication and infection in hepatocyte-derived cells. Comparative analysis demonstrated that delivery of siRNAs by MPFs was more sustained and durable than siRNA delivery by standard methods, including electroporation or liposomes. The antiviral effect of siRNA-MPFs was reversed by a hyaluronidase inhibitor, suggesting that active degradation of MPFs by cellular enzymes is required for siRNA delivery. In conclusion, our results demonstrate that cell-degradable MPFs represent an efficient and simple approach for sustained siRNA delivery targeting viral infection. Moreover, this MPF-based delivery system may represent a promising previously undescribed perspective for the use of RNAi as a therapeutic strategy for human diseases.


Asunto(s)
Electrólitos/metabolismo , Hepacivirus/genética , ARN Interferente Pequeño/genética , Transgenes/genética , Humanos , Hialuronoglucosaminidasa/metabolismo , Replicación Viral
11.
Small ; 6(21): 2405-11, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20878791

RESUMEN

The capability of multilayered polyelectrolyte films (MPFs) to control the sequential expression of two genes encoding cell receptors involved in a common cell signalling activity is shown, while achieving a fully functional signal transduction. As a functional model system representative of a cell signalling process that proceeds in a top-down manner, cell collapse induced by semaphorin 3A (Sema3A) was chosen as the target. Polyelectrolyte multilayers were sequentially functionalized with two plasmids encoding Neuropilin-1 (NRP-1) and Plexin-A1 (Plx-A1), respectively, acting as co-receptors for Sema3A. By using hyaluronan and chitosan as structural components for the incorporation of plasmid DNA layers onto precursor films made of poly-allylamine hydrochloride and poly-sodium-4-styrenesulfonate, the polyelectrolyte system is established; this systems is capable of delivering both plasmids to Cos-1 cells in a manner that permits control over the timing and the respective order in which the two plasmid DNA constructs are expressed. Importantly, it was observed that, following Sema3A stimulation, COS-1 cells co-expressing Plx-A1 and NRP-1 display a collapse phenotype, which is determined by the multilayer build-up scheme, and that the expression products of both transgenes embedded in MPFs are temporally functional over several days while acting their role of co-receptors for Sema3A.


Asunto(s)
Técnicas de Transferencia de Gen , Semaforinas/farmacología , Transducción de Señal , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Inmunohistoquímica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Polímeros/síntesis química , Polímeros/química , Transducción de Señal/genética , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/química , Transfección
12.
Nat Mater ; 8(9): 731-5, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19668209

RESUMEN

Fibronectin, like other proteins involved in mechanotransduction, has the ability to exhibit recognition sites under mechanical stretch. Such cryptic sites are buried inside the protein structure in the native fold and become exposed under an applied force, thereby activating specific signalling pathways. Here, we report the design of new active polymeric nanoassembled surfaces that show some similarities to these cryptic sites. These nanoassemblies consist of a first polyelectrolyte multilayer stratum loaded with enzymes and capped with a second polyelectrolyte multilayer acting as a mechanically sensitive nanobarrier. The biocatalytic activity of the film is switched on/off reversibly by mechanical stretching, which exposes enzymes through the capping barrier, similarly to mechanisms involved in proteins during mechanotransduction. This first example of a new class of biologically inspired surfaces should have great potential in the design of various devices aimed to trigger and modulate chemical reactions by mechanical action with applications in the field of microfluidic devices or mechanically controlled biopatches for example.


Asunto(s)
Biocatálisis , Activación Enzimática , Estrés Mecánico , Adsorción , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Fenómenos Biomecánicos , Difosfatos/química , Electrólitos , Fluoresceína/química , Fluoresceína/metabolismo , Ácido Hialurónico/química , Oxidación-Reducción , Polilisina/química , Propiedades de Superficie
13.
Chemphyschem ; 11(15): 3299-305, 2010 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-20806310

RESUMEN

Films formed by oxidation of dopamine are of interest for functionalisation of solid-liquid interfaces owing to their versatility. However, the ability to modulate the properties of such films, for example, permeability to ionic species and the absorption coefficient, is urgently needed. Indeed, melanin films produced by oxidation of dopamine absorb strongly over the whole UV/Vis part of the electromagnetic spectrum and are impermeable to anions even for a film thickness as low as a few nanometers. Herein we combine oxidation of dopamine to produce a solution containing dopamine-melanin particles and their alternating deposition with poly(diallyldimethylammonium chloride) to produce films which have nearly the same morphology as pure dopamine-melanin films but are less compact, more transparent and more permeable to ferrocyanide anions.


Asunto(s)
Dopamina/química , Melaninas/química , Absorción , Compuestos Alílicos/química , Ferrocianuros/química , Oxidación-Reducción , Polímeros/química , Compuestos de Amonio Cuaternario/química , Espectrofotometría Ultravioleta
14.
Langmuir ; 26(4): 2816-24, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-19950954

RESUMEN

We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.


Asunto(s)
Membranas Artificiales , Polímeros/química , Catálisis , Cobre/química , Electroquímica , Electrodos , Electrólitos/química , Oxidación-Reducción
15.
Langmuir ; 26(14): 12351-7, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20568818

RESUMEN

The step-by-step buildup of organic films through physical or covalent bonds is usually performed by the alternating adsorption of two types of polymeric chains. Overcompensation of the interacting groups after each deposition step (e.g., charge overcompensation in the case of polyelectrolyte multilayers) allows the buildup process to proceed. This overcompensation is intimately linked to the polymeric nature of the interacting species. We report here another type of film architecture also based on step-by-step construction but involving the covalent bonding, through the Sharpless click reaction, between polyelectrolytes (i.e., polyanions) and neutral bifunctional molecules. The films are built by the Cu(I)-catalyzed click reaction of poly(acrylic acid) (PAA) functionalized with ethylene glycol (EG) arms, each ending with either an alkyne or an azide group, and bifunctionalized EG spacers ended with either alkyne or azide functions. We prove that these systems lead to the regular buildup of films that cover the whole substrate surface and whose roughness varies as the thickness of the film core. The effects of various parameters on film buildup are investigated. The grafting density of reactive moieties along the PAA chains has no influence on the thickness increment per bilayer. EG spacers bifunctionalized with alkyne groups reacting with PAA chains functionalized with azide arms give films that grow more rapidly than those obtained with azide-functionalized EG spacers and alkyne-functionalized PAA chains. The influence of the length of the EG arm (grafted on PAA) and of the EG spacer on the film buildup is also investigated: longer arms or longer spacers lead to larger thickness increments per bilayer, except for very large spacers of 50 EG units for which the thickness is the smallest probably because of size exclusion effects during the deposition.


Asunto(s)
Electrólitos/química , Polímeros/química , Adsorción , Catálisis , Cobre/química , Microscopía de Fuerza Atómica
16.
Langmuir ; 25(24): 14030-6, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19678659

RESUMEN

Polyelectrolyte multilayer (PEM) films have become very popular for surface functionalization and the design of functional architectures such as hollow polyelectrolyte capsules. It is known that properties such as permeability to small ionic solutes are strongly dependent on the buildup regime of the PEM films. This permeability can be modified by tuning the ionization degree of the polycations or polyanions, provided the film is made from weak polyelectrolytes. In most previous investigations, this was achieved by playing on the solution pH either during the film buildup or by a postbuildup pH modification. Herein we investigate the functionalization of poly(allylamine hydrochloride)/poly(glutamic acid) (PAH/PGA) multilayers by ferrocyanide and Prussian Blue (PB). We demonstrate that dynamic exchange processes between the film and polyelectrolyte solutions containing one of the component polyelectrolyte allow one to modify its Donnan potential and, as a consequence, the amount of ferrocyanide anions able to be retained in the PAH/PGA film. This ability of the film to be a tunable reservoir of ferrocyanide anions is then used to produce a composite film containing PB particles obtained by a single precipitation reaction with a solution containing Fe(3+) cations in contact with the film. The presence of PB in the PEM films then provides magnetic as well as electrochemical properties to the whole architecture.


Asunto(s)
Electrólitos/química , Ferrocianuros/síntesis química , Membranas Artificiales , Polímeros/química , Técnicas Electroquímicas , Ferrocianuros/análisis , Iones , Permeabilidad
17.
Biochim Biophys Acta ; 1768(2): 280-90, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17084808

RESUMEN

Complexation between linear poly-L-lysine (PLL) and negatively charged phosphocholine unilamellar liposomes has been investigated by means of dynamic light scattering, microelectrophoresis, and differential scanning calorimetry. It is found that complexation results in charge inversion (vesicle coating/stabilization) or vesicle aggregation depending on various experimental conditions. Complexation in dependence on PLL concentration and molecular mass, lipid phase state, rate and order of liposome and PLL mixing and time evolution of complexes are investigated and discussed. Aggregation profiles are determined and size distribution of the aggregates formed is studied, leading to the possibility of aggregation control. The time evolution of vesicle aggregation shows particle enlargement consisting in particle growth up to the irreversible formation of thermodynamically stable aggregates of about 2 microm in diameter. The formation of stable aggregates is in agreement with theoretical predictions of colloid particles aggregation by an interplay of long range electrostatic repulsion and short range attraction. Differential scanning calorimetry reveals that physical adsorption occurs exclusively on the vesicle surface and the lipidic organization is not significantly disturbed. The present study describes multivariable aspects of the complexation process between liposomes and polyions which results in the formation of a new class of still poorly defined colloids. These results allow establishing and optimization of a procedure for fabrication of polycation-stabilized vesicles to be used for various applications such as drug delivery.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fosforilcolina/metabolismo , Polilisina/metabolismo , Liposomas Unilamelares/metabolismo , Rastreo Diferencial de Calorimetría , Coloides/química , Electroforesis , Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Fosforilcolina/química , Polilisina/química , Termodinámica , Liposomas Unilamelares/química
18.
Adv Mater ; 20(14): 2674-8, 2008 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25213888

RESUMEN

Rapid differentiation of endothelial progenitor cells (EPCs) into confluent mature endothelial cells is important in tissue engineering for the design of autologous, nonthrombotic, vascular grafts. A new method based on EPC culture on poly(sodium-4- styrene-sulfonate)/poly(allylamine hydrochloride), that is, polyelectrolyte-multilayer-coated substrates, reduces the time from two months to two weeks.

19.
Biomaterials ; 29(5): 618-24, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17996296

RESUMEN

In an effort to develop new biomaterial coatings, it was shown that polyelectrolyte multilayers constitute a very powerful tool to render surfaces biologically active. The challenge is to multi-functionalize surfaces in a controlled way. We show here, for the first time, that it is possible to functionalize multilayer films simultaneously with two molecules acting in totally different ways on cells, namely plasmid DNA (pDNA), pre-complexed with poly(ethyleneimine) (PEI), and a peptide molecule, NDPMSH. This peptide, grafted to poly(L-glutamic acid) (PGA) was used as a signal molecule for melanoma cells B16-F1 and for its ability to enhance gene delivery in a receptor-independent manner. The PGA-NDPMSH chains are embedded in poly-(allylamine hydrochloride)/poly-(sodium 4-styrene sulfonate) multilayers and the pDNA-PEI complexes are deposited on top of the films. It is shown that melanoma cells (B16-F1) are efficiently transfected after 24h of contact with functionalized films. When brought in contact with Huh-7 cells that do not express the peptide receptors, these films trigger significantly the transfection rate, showing that it is possible to enhance the transfection process by incorporating specific peptides into multilayer films. Moreover, transfected cells sorted by flow cytometry produce melanin, demonstrating both activation via the peptide signaling pathway and cell transfection.


Asunto(s)
Polímeros , Transfección/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Línea Celular Tumoral , Electrólitos , Melaninas/biosíntesis , Ratones , Microscopía de Fuerza Atómica , Polímeros/química , Polímeros/metabolismo , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo
20.
Soft Matter ; 4(8): 1621-1624, 2008 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32907155

RESUMEN

In this communication, we demonstrate that dopamine is able to undergo a polymerisation process in (PLL-HA)n polyelectrolyte multilayer films, and that this polymerisation is of the same nature as in solution at pH 8.5. This polymerisation changes the chemical composition and decreases the mobility of the PLL chains in the film, and ultimately allows the easy detachment of the film as free-standing membranes with 0.1 M HCl solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA