RESUMEN
Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.
Asunto(s)
Epidemias , Peste , Yersinia pestis , Humanos , Peste/epidemiología , Yersinia pestis/genética , Madagascar/epidemiología , GenómicaRESUMEN
BACKGROUND: Pneumonic plague (PP), caused by Yersinia pestis, is the most feared clinical form of plague due to its rapid lethality and potential to cause outbreaks. PP outbreaks are now rare due to antimicrobial therapy. METHODS: A PP outbreak in Madagascar involving transmission of a Y. pestis strain resistant to streptomycin, the current recommended first-line treatment in Madagascar, was retrospectively characterized using epidemiology, clinical diagnostics, molecular characterization, and animal studies. RESULTS: The outbreak occurred in February 2013 in the Faratsiho district of Madagascar and involved 22 cases, including 3 untreated fatalities. The 19 other cases participated in funeral practices for the fatal cases and fully recovered after combination antimicrobial therapy: intramuscular streptomycin followed by oral co-trimoxazole. The Y. pestis strain that circulated during this outbreak is resistant to streptomycin resulting from a spontaneous point mutation in the 30S ribosomal protein S12 (rpsL) gene. This same mutation causes streptomycin resistance in 2 unrelated Y. pestis strains, one isolated from a fatal PP case in a different region of Madagascar in 1987 and another isolated from a fatal PP case in China in 1996, documenting this mutation has occurred independently at least 3 times in Y. pestis. Laboratory experiments revealed this mutation has no detectable impact on fitness or virulence, and revertants to wild-type are rare in other species containing it, suggesting Y. pestis strains containing it could persist in the environment. CONCLUSIONS: Unique antimicrobial resistant (AMR) strains of Y. pestis continue to arise in Madagascar and can be transmitted during PP outbreaks.
Asunto(s)
Peste , Yersinia pestis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brotes de Enfermedades , Peste/tratamiento farmacológico , Peste/epidemiología , Estudios Retrospectivos , Yersinia pestis/genéticaRESUMEN
We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage.
Asunto(s)
Francisella tularensis/clasificación , Tularemia/epidemiología , Francisella tularensis/genética , Genoma Viral , Humanos , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Tularemia/microbiología , Estados Unidos/epidemiologíaRESUMEN
Francisella tularensis subsp. holarctica isolates from Austria, Germany, Hungary, Italy, and Romania were placed into an existing phylogeographic framework. Isolates from Italy were assigned to phylogenetic group B.FTNF002-00; the other isolates, to group B.13. Most F. tularensis subsp. holarctica isolates from Europe belong to these 2 geographically segregated groups.
Asunto(s)
Francisella tularensis/genética , Europa (Continente) , Francisella tularensis/clasificación , Tipificación Molecular , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum.
Asunto(s)
Burkholderia pseudomallei/genética , Evolución Molecular , Genes Bacterianos/genética , Melioidosis/genética , Filogenia , Adulto , Secuencia de Bases , Electroforesis en Gel de Campo Pulsado , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite/genética , Datos de Secuencia Molecular , MutaciónRESUMEN
Plague is a re-emerging zoonotic disease and a major public health concern in several portions of the world, especially in Madagascar. We report on the presence of different subtypes of Yersinia pestis co-occurring in the same locality. After confirmation of a human plague case in Ambohitromby Commune (Ankazobe District) via isolation of Y. pestis, we undertook small mammal trapping to identify the circulation of Y. pestis amongst rodents in this locality; blood samples were collected from rodents for seroprevalence analysis. Of the 60 individuals of Rattus rattus captured, one yielded an isolate of Y. pestis, 13 others were positive for F1 antigen of Y. pestis using a rapid diagnostic test, and 4 were PCR positive targeting the caf1 and pla genes; 28/60 (46.7%) of the captured R. rattus were seropositive for Y. pestis. Whole-genome SNP analyses revealed that the two isolates obtained from the human case, and the R. rattus belonged to two different subtypes of Y. pestis (s05 and s13, respectively) that were circulating concurrently in Ambohitromby in 2016. Three Y. pestis subtypes (s03, s05 and s13) have now been isolated from Ambohitromby. Subtype s05 had been persisting there for >10 years but one or both of the other subtypes may have been introduced from the Central Highlands region as they were not observed in previous years (s13) or only observed once previously (s03). High seroprevalence against Y. pestis in R. rattus suggests that a portion of the local murine population may have acquired resistance to Y. pestis. Future research should focus on genomically characterizing Y. pestis strains circulating in Ankazobe District and other plague-endemic regions of Madagascar to better understand the overall phylogeography of Y. pestis.
Asunto(s)
Peste , Enfermedades de los Roedores , Yersinia pestis , Animales , Madagascar/epidemiología , Mamíferos , Ratones , Peste/epidemiología , Peste/veterinaria , Ratas , Enfermedades de los Roedores/epidemiología , Estudios Seroepidemiológicos , Yersinia pestis/genética , ZoonosisRESUMEN
BACKGROUND: Francisella tularensis, the causative agent of tularemia, displays subspecies-specific differences in virulence, geographic distribution, and genetic diversity. F. tularensis subsp. holarctica is widely distributed throughout the Northern Hemisphere. In Europe, F. tularensis subsp. holarctica isolates have largely been assigned to two phylogenetic groups that have specific geographic distributions. Most isolates from Western Europe are assigned to the B.Br.FTNF002-00 group, whereas most isolates from Eastern Europe are assigned to numerous lineages within the B.Br.013 group. The eastern geographic extent of the B.Br.013 group is currently unknown due to a lack of phylogenetic knowledge about populations at the European/Asian juncture and in Asia. In this study, we address this knowledge gap by describing the phylogenetic structure of F. tularensis subsp. holarctica isolates from the country of Georgia, and by placing these isolates into a global phylogeographic context. RESULTS: We identified a new genetic lineage of F. tularensis subsp. holarctica from Georgia that belongs to the B.Br.013 group. This new lineage is genetically and geographically distinct from lineages previously described from the B.Br.013 group from Central-Eastern Europe. Importantly, this new lineage is basal within the B.Br.013 group, indicating the Georgian lineage diverged before the diversification of the other known B.Br.013 lineages. Although two isolates from the Georgian lineage were collected nearby in the Ukrainian region of Crimea, all other global isolates assigned to this lineage were collected in Georgia. This restricted geographic distribution, as well as the high levels of genetic diversity within the lineage, is consistent with a relatively older origin and localized differentiation. CONCLUSIONS: We identified a new lineage of F. tularensis subsp. holarctica from Georgia that appears to have an older origin than any other diversified lineages previously described from the B.Br.013 group. This finding suggests that additional phylogenetic studies of F. tularensis subsp. holarctica populations in Eastern Europe and Asia have the potential to yield important new insights into the evolutionary history and phylogeography of this broadly dispersed F. tularensis subspecies.
Asunto(s)
Francisella tularensis/clasificación , Francisella tularensis/genética , Filogeografía , Tularemia/microbiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Francisella tularensis/aislamiento & purificación , Georgia (República) , Datos de Secuencia Molecular , Análisis de Secuencia de ADNAsunto(s)
Francisella tularensis/genética , Enfermedades Faríngeas/microbiología , Tularemia/microbiología , Brotes de Enfermedades , Genes Bacterianos , Humanos , Enfermedades Faríngeas/epidemiología , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Tularemia/epidemiología , Turquía/epidemiologíaRESUMEN
Francisella tularensis contains several highly pathogenic subspecies, including Francisella tularensis subsp. holarctica, whose distribution is circumpolar in the northern hemisphere. The phylogeography of these subspecies and their subclades was examined using whole-genome single nucleotide polymorphism (SNP) analysis, high-density microarray SNP genotyping, and real-time-PCR-based canonical SNP (canSNP) assays. Almost 30,000 SNPs were identified among 13 whole genomes for phylogenetic analysis. We selected 1,655 SNPs to genotype 95 isolates on a high-density microarray platform. Finally, 23 clade- and subclade-specific canSNPs were identified and used to genotype 496 isolates to establish global geographic genetic patterns. We confirm previous findings concerning the four subspecies and two Francisella tularensis subsp. tularensis subpopulations and identify additional structure within these groups. We identify 11 subclades within F. tularensis subsp. holarctica, including a new, genetically distinct subclade that appears intermediate between Japanese F. tularensis subsp. holarctica isolates and the common F. tularensis subsp. holarctica isolates associated with the radiation event (the B radiation) wherein this subspecies spread throughout the northern hemisphere. Phylogenetic analyses suggest a North American origin for this B-radiation clade and multiple dispersal events between North America and Eurasia. These findings indicate a complex transmission history for F. tularensis subsp. holarctica.
Asunto(s)
ADN Bacteriano/genética , Francisella tularensis/clasificación , Francisella tularensis/aislamiento & purificación , Geografía , Polimorfismo de Nucleótido Simple , Tularemia/epidemiología , Tularemia/microbiología , Asia/epidemiología , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Europa (Continente)/epidemiología , Francisella tularensis/genética , Genoma Bacteriano , Genotipo , Análisis por Micromatrices/métodos , Epidemiología Molecular , América del Norte/epidemiología , FilogeniaRESUMEN
We describe an analytic approach to provide fine-scale discrimination among multiple infection source hypotheses. This approach uses mutation-rate data for rapidly evolving multiple locus variable-number tandem repeat loci in probabilistic models to identify the most likely source. We illustrate the utility of this approach using data from a North American human plague investigation.
Asunto(s)
Epidemiología Molecular , Peste/epidemiología , Yersinia pestis/genética , Evolución Molecular , Genotipo , Humanos , Modelos Estadísticos , Mutación , New Mexico/epidemiología , Peste/microbiología , Yersinia pestis/aislamiento & purificaciónRESUMEN
INTRODUCTION: The difficulty involved in obtaining sufficient intact genomic deoxyribonucleic acid (DNA) from Coccidioides spp for downstream applications using published protocols prompted the exploration of inactivating mycelia and arthroconidia using heat under biosafety level 3 containment. This was followed by optimizing DNA extraction from mycelia using various methods at lower containment. METHODS: Various exposure times and temperatures were examined to identify an effective heat inactivation procedure for arthroconidia and mycelia from both C immitis and C posadasii. Heat inactivation of mycelia was followed by DNA extraction using 2 commercially available kits, as well as a phenol:chloroform-based extraction procedure to determine DNA integrity and quantity among extraction methods using both live and heat-inactivated mycelia. RESULTS: Ten-minute and 30-minute exposure times at 80°C were sufficient to inactivate Coccidioides spp arthroconidia and mycelia, respectively. DNA yield between live versus heat-inactivated mycelia was similar for each extraction procedure. However, DNA obtained using phenol:chloroform was of higher quantity and integrity compared with DNA obtained using the commercially available kits, which was highly fragmented. CONCLUSION: The ability to heat-inactivate Coccidioides cultures for processing at a lower level of containment greatly increased the efficiency of DNA extractions. Therefore, this is an ideal method for obtaining Coccidioides spp DNA and inactivated arthroconidia.
RESUMEN
Yersinia pestis was introduced to Brazil during the third plague pandemic and currently exists in several recognized foci. There is currently limited available phylogeographic data regarding Y. pestis in Brazil. We generated whole genome sequences for 411 Y. pestis strains from six Brazilian foci to investigate the phylogeography of Y. pestis in Brazil; these strains were isolated from 1966 to 1997. All 411 strains were assigned to a single monophyletic clade within the 1.ORI population, indicating a single Y. pestis introduction was responsible for the successful establishment of endemic foci in Brazil. There was a moderate level of genomic diversity but little population structure among the 411 Brazilian Y. pestis strains, consistent with a radial expansion wherein Y. pestis spread rapidly from the coast to the interior of Brazil and became ecologically established. Overall, there were no strong spatial or temporal patterns among the Brazilian strains. However, strains from the same focus tended to be more closely related and strains isolated from foci closer to the coast tended to fall in more basal positions in the whole genome phylogeny than strains from more interior foci. Overall, the patterns observed in Brazil are similar to other locations affected during the 3rd plague pandemic such as in North America and Madagascar.
Asunto(s)
Pandemias/historia , Peste/historia , Yersinia pestis/genética , Brasil/epidemiología , ADN Bacteriano/genética , Variación Genética , Genoma Bacteriano , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Filogenia , Filogeografía , Peste/epidemiología , Peste/microbiología , Polimorfismo de Nucleótido Simple , Análisis Espacio-Temporal , Yersinia pestis/clasificación , Yersinia pestis/aislamiento & purificaciónRESUMEN
We present TaqMan-minor groove binding (MGB) assays for an SNP that separates the Yersinia pestis strain CO92 from all other strains and for another SNP that separates North American strains from all other global strains.
Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Yersinia pestis/clasificación , Yersinia pestis/aislamiento & purificación , Alelos , ADN Bacteriano/análisis , ADN Bacteriano/genética , Genotipo , América del Norte , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Factores de Tiempo , Yersinia pestis/genéticaRESUMEN
Asymptomatic colonization with extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae has been described for humans, various mammal species, and birds. Here, antimicrobial resistant bacteria were recovered from dog feces originating in Germany, Kosovo, Afghanistan, Croatia, and Ukraine, with a subset of mostly E. coli isolates obtained from a longitudinal collection over twelve months. In vitro antimicrobial resistance testing revealed various patterns of resistance against single or all investigated beta-lactam antibiotics, with none of the 101 isolates resistant against two tested carbapenem antibiotics. Whole genome sequence analysis revealed bacteria species-specific patterns for 23 antimicrobial resistance coding DNA sequences (CDS) that were unapparent from the in vitro analysis alone. Phylogenetic analysis of single nucleotide polymorphisms (SNP) revealed clonal bacterial isolates originating from different dogs, suggesting transmission between dogs in the same community. However, individual resistant E. coli clones were not detected over a period longer than seven days. Multi locus sequence typing (MLST) of 85 E. coli isolates revealed 31 different sequence types (ST) with an accumulation of ST744 (n = 9), ST10 (n = 8), and ST648 (n = 6), although the world-wide hospital-associated CTX-M beta-lactamase producing ST131 was not detected. Neither the antimicrobial resistance CDSs patterns nor the phylogenetic analysis revealed an epidemiological correlation among the longitudinal isolates collected from a period longer than seven days. No genetic linkage could be associated with the geographic origin of isolates. In conclusion, healthy dogs frequently carry ESBL-producing bacteria, independent to prior treatment, which may be transmitted between individual dogs of the same community. Otherwise, these antimicrobial resistant bacteria share few commonalities, making their presence eerily unpredictable.
Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Genómica , Fenotipo , beta-Lactamasas/biosíntesis , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Perros , Farmacorresistencia Bacteriana/genética , Alemania , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido SimpleRESUMEN
Molecular typing methods for Burkholderia pseudomallei have been successful at assigning isolates into epidemiologically related groups, but have not been able to detect differences and define evolutionary patterns within groups. Our variable number tandem repeat (VNTR) analysis of a set of 121 Australian B. pseudomallei isolates, 104 of which were associated with nine epidemiological groups, provides fine scale differentiation even among very closely related isolates. We used a Bayesian model based upon mutation accumulation patterns to define the close phylogenetic relationships within these epidemiological groups. Our results reveal that genetic diversity can exist within a very small geographic area, and that low levels of diversity can exist even within a single infection. These methods provide the ability to generate robust evolutionary hypotheses that enable tracking of B. pseudomallei in forensic and epidemiological outbreaks at fine phylogenetic scales.
Asunto(s)
Burkholderia pseudomallei/genética , Brotes de Enfermedades , Melioidosis/epidemiología , Repeticiones de Minisatélite/genética , Animales , Australia/epidemiología , Burkholderia pseudomallei/aislamiento & purificación , Cabras , Humanos , FilogeniaRESUMEN
VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database.
Asunto(s)
ADN Bacteriano/genética , Evolución Molecular , Variación Genética , Repeticiones de Minisatélite , Mutación , Yersinia pestis/genética , Animales , Bases de Datos Genéticas , Brotes de Enfermedades , Perros , Dosificación de Gen , Genotipo , Filogenia , Peste/epidemiología , Peste/transmisiónRESUMEN
BACKGROUND: Yersinia pestis appears to be maintained in multiple, geographically separate, and phylogenetically distinct subpopulations within the highlands of Madagascar. However, the dynamics of these locally differentiated subpopulations through time are mostly unknown. To address that gap and further inform our understanding of plague epidemiology, we investigated the phylogeography of Y. pestis in Madagascar over an 18 year period. METHODOLOGY/PRINCIPAL FINDINGS: We generated whole genome sequences for 31 strains and discovered new SNPs that we used in conjunction with previously identified SNPs and variable-number tandem repeats (VNTRs) to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the locations where samples were obtained on a fine geographic scale to examine phylogeographic patterns through time. We identified 18 geographically separate and phylogenetically distinct subpopulations that display spatial and temporal stability, persisting in the same locations over a period of almost two decades. We found that geographic areas with higher levels of topographical relief are associated with greater levels of phylogenetic diversity and that sampling frequency can vary considerably among subpopulations and from year to year. We also found evidence of various Y. pestis dispersal events, including over long distances, but no evidence that any dispersal events resulted in successful establishment of a transferred genotype in a new location during the examined time period. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local areas are responsible for the long term maintenance of plague in Madagascar, rather than repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintaining Y. pestis subpopulations in Madagascar, with increased topographical relief associated with increased levels of localized differentiation. Local ecological factors likely affect the dynamics of individual subpopulations and the associated likelihood of observing human plague cases in a given year in a particular location.
Asunto(s)
Filogeografía , Peste/epidemiología , Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/aislamiento & purificación , Enfermedades Endémicas , Genoma Bacteriano , Genotipo , Humanos , Madagascar/epidemiología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Análisis Espacio-Temporal , Yersinia pestis/genéticaRESUMEN
Numerous subtyping methods have been applied to Yersinia pestis with varying success. Here, we review the various subtyping methods that have been applied to Y. pestis and their capacity for answering questions regarding the population genetics, phylogeography, and molecular epidemiology of this important human pathogen. Methods are evaluated in terms of expense, difficulty, transferability among laboratories, discriminatory power, usefulness for different study questions, and current applicability in light of the advent of whole genome sequencing.
Asunto(s)
Tipificación Molecular/métodos , Peste/microbiología , Yersinia pestis/clasificación , Variación Genética , Genoma Bacteriano , Humanos , Tipificación Molecular/economía , Fenotipo , Filogenia , Filogeografía , Análisis de Secuencia de ADN/métodos , Yersinia pestis/genéticaRESUMEN
Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.