Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 37(5): 714-27, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20227374

RESUMEN

Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Fibroblastos/enzimología , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Portadoras/metabolismo , Línea Celular , Senescencia Celular , ADN Polimerasa II/metabolismo , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Fibroblastos/efectos de la radiación , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación C/metabolismo , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas , Ubiquitinación , Rayos Ultravioleta , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
2.
Cancer Cell ; 10(2): 121-32, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16904611

RESUMEN

Inborn defects in nucleotide excision DNA repair (NER) can paradoxically result in elevated cancer incidence (xeroderma pigmentosum [XP]) or segmental progeria without cancer predisposition (Cockayne syndrome [CS] and trichothiodystrophy [TTD]). We report generation of a knockin mouse model for the combined disorder XPCS with a G602D-encoding mutation in the Xpd helicase gene. XPCS mice are the most skin cancer-prone NER model to date, and we postulate an unusual NER dysfunction that is likely responsible for this susceptibility. XPCS mice also displayed symptoms of segmental progeria, including cachexia and progressive loss of germinal epithelium. Like CS fibroblasts, XPCS and TTD fibroblasts from human and mouse showed evidence of defective repair of oxidative DNA lesions that may underlie these segmental progeroid symptoms.


Asunto(s)
Síndrome de Cockayne/patología , Progeria/patología , Neoplasias Cutáneas/patología , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Xerodermia Pigmentosa/patología , Animales , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Transformada , Síndrome de Cockayne/complicaciones , Síndrome de Cockayne/metabolismo , Reparación del ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Ratones , Ratones Mutantes , Mutación , Papiloma/etiología , Papiloma/metabolismo , Papiloma/patología , Fenotipo , Progeria/complicaciones , Progeria/metabolismo , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
3.
Semin Cell Dev Biol ; 22(8): 875-85, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21802523

RESUMEN

Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Inestabilidad Genómica/genética , Variación Estructural del Genoma/genética , Neoplasias/genética , Humanos
4.
Mol Cell Biol ; 25(18): 8368-78, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16135823

RESUMEN

Defects in the XPD gene can result in several clinical phenotypes, including xeroderma pigmentosum (XP), trichothiodystrophy, and, less frequently, the combined phenotype of XP and Cockayne syndrome (XP-D/CS). We previously showed that in cells from two XP-D/CS patients, breaks were introduced into cellular DNA on exposure to UV damage, but these breaks were not at the sites of the damage. In the present work, we show that three further XP-D/CS patients show the same peculiar breakage phenomenon. We show that these breaks can be visualized inside the cells by immunofluorescence using antibodies to either gamma-H2AX or poly-ADP-ribose and that they can be generated by the introduction of plasmids harboring methylation or oxidative damage as well as by UV photoproducts. Inhibition of RNA polymerase II transcription by four different inhibitors dramatically reduced the number of UV-induced breaks. Furthermore, the breaks were dependent on the nucleotide excision repair (NER) machinery. These data are consistent with our hypothesis that the NER machinery introduces the breaks at sites of transcription initiation. During transcription in UV-irradiated XP-D/CS cells, phosphorylation of the carboxy-terminal domain of RNA polymerase II occurred normally, but the elongating form of the polymerase remained blocked at lesions and was eventually degraded.


Asunto(s)
Síndrome de Cockayne/genética , Daño del ADN , Reparación del ADN , Transcripción Genética , Xerodermia Pigmentosa/genética , Síndrome de Cockayne/complicaciones , ADN/efectos de la radiación , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Histonas/análisis , Humanos , Fosforilación , Poli Adenosina Difosfato Ribosa/análisis , ARN Polimerasa II/metabolismo , Rayos Ultravioleta , Xerodermia Pigmentosa/complicaciones
5.
Mol Cell Biol ; 23(16): 5755-67, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897146

RESUMEN

Nucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a central organizer and damage verifier in NER. How XPA reaches DNA lesions and how the protein is distributed in time and space in living cells are unknown. Here we studied XPA in vivo by using a cell line stably expressing physiological levels of functional XPA fused to green fluorescent protein and by applying quantitative fluorescence microscopy. The majority of XPA moves rapidly through the nucleoplasm with a diffusion rate different from those of other NER factors tested, arguing against a preassembled XPA-containing NER complex. DNA damage induced a transient ( approximately 5-min) immobilization of maximally 30% of XPA. Immobilization depends on XPC, indicating that XPA is not the initial lesion recognition protein in vivo. Moreover, loading of replication protein A on NER lesions was not dependent on XPA. Thus, XPA participates in NER by incorporation of free diffusing molecules in XPC-dependent NER-DNA complexes. This study supports a model for a rapid consecutive assembly of free NER factors, and a relatively slow simultaneous disassembly, after repair.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/fisiología , Línea Celular , Núcleo Celular/metabolismo , Daño del ADN , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Immunoblotting , Luz , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Modelos Genéticos , Péptidos/química , Estructura Terciaria de Proteína , Factores de Tiempo , Transfección , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A
6.
DNA Repair (Amst) ; 4(5): 571-82, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-15811629

RESUMEN

Previous studies point to the XPC-hHR23B complex as the principal initiator of global genome nucleotide excision repair (NER) pathway, responsible for the repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) in human cells. However, the UV-damaged DNA binding protein (UV-DDB) has also been proposed as a damage recognition factor involved in repair of UV-photoproducts, especially CPD. Here, we show in human XP-E cells (UV-DDB deficient) that the incision complex formation at UV-induced lesions was severely diminished in locally damaged nuclear spots. Repair kinetics of CPD and 6-4PP in locally and globally UV-irradiated normal human and XP-E cells demonstrate that UV-DDB can mediate efficient targeting of XPC-hHR23B and other NER factors to 6-4PP. The data is consistent with a mechanism in which UV-DDB forms a stable complex when bound to a 6-4PP, allowing subsequent repair proteins--starting with XPC-hHR23B--to accumulate, and verify the lesion, resulting in efficient 6-4PP repair. These findings suggest that (i) UV-DDB accelerates repair of 6-4PP, and at later time points also CPD, (ii) the fraction of 6-4PP that can be bound by UV-DDB is limited due to its low cellular quantity and fast UV dependent degradation, and (iii) in the absence of UV-DDB a slow XPC-hHR23B dependent pathway is capable to repair 6-4PP, and to some extent also CPD.


Asunto(s)
Daño del ADN/efectos de la radiación , Reparación del ADN , ADN/metabolismo , ADN/efectos de la radiación , Dímeros de Pirimidina , Xerodermia Pigmentosa , Núcleo Celular/efectos de la radiación , ADN/genética , Daño del ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Humanos , Fotoquímica , Rayos Ultravioleta , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A
7.
J Cell Biol ; 192(3): 401-15, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21282463

RESUMEN

Single-stranded DNA gaps that might arise by futile repair processes can lead to mutagenic events and challenge genome integrity. Nucleotide excision repair (NER) is an evolutionarily conserved repair mechanism, essential for removal of helix-distorting DNA lesions. In the currently prevailing model, NER operates through coordinated assembly of repair factors into pre- and post-incision complexes; however, its regulation in vivo is poorly understood. Notably, the transition from dual incision to repair synthesis should be rigidly synchronized as it might lead to accumulation of unprocessed repair intermediates. We monitored NER regulatory events in vivo using sequential UV irradiations. Under conditions that allow incision yet prevent completion of repair synthesis or ligation, preincision factors can reassociate with new damage sites. In contrast, replication protein A remains at the incomplete NER sites and regulates a feedback loop from completion of DNA repair synthesis to subsequent damage recognition, independently of ATR signaling. Our data reveal an important function for replication protein A in averting further generation of DNA strand breaks that could lead to mutagenic and recombinogenic events.


Asunto(s)
Reparación del ADN , Proteína de Replicación A/fisiología , Células Cultivadas , Replicación del ADN , ADN de Cadena Simple/metabolismo , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Genoma Humano , Humanos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Rayos Ultravioleta/efectos adversos
8.
Proc Natl Acad Sci U S A ; 101(45): 15933-7, 2004 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-15520397

RESUMEN

Chromatin is the substrate for many processes in the cell nucleus, including transcription, replication, and various DNA repair systems, all of which require the formation of multiprotein machineries on the chromatin fiber. We have analyzed the kinetics of in vivo assembly of the protein complex that is responsible for nucleotide excision repair (NER) in mammalian cells. Assembly is initiated by UV irradiation of a small area of the cell nucleus, after which the accumulation of GFP-tagged NER proteins in the DNA-damaged area is measured, reflecting the establishment of the dual-incision complex. The dynamic behavior of two NER proteins, ERCC1-XPF and TFIIH, was studied in detail. Results show that the repair complex is assembled with a rate of approximately 30 complexes per second and is not diffusion limited. Furthermore, we provide in vivo evidence that not only binding of TFIIH, but also its helicase activity, is required for the recruitment of ERCC1-XPF. These studies give quantitative insight into the de novo assembly of a chromatin-associated protein complex in living cells.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN/fisiología , Animales , Células CHO , Cromatina/efectos de la radiación , Cricetinae , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA