Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lancet ; 402(10400): 451-463, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37423228

RESUMEN

BACKGROUND: Despite immunotherapy advancements for patients with advanced or metastatic non-small-cell lung cancer (NSCLC), pivotal first-line trials were limited to patients with an Eastern Cooperative Oncology Group performance status (ECOG PS) 0-1 and a median age of 65 years or younger. We aimed to compare the efficacy and safety of first-line atezolizumab monotherapy with single-agent chemotherapy in patients ineligible for platinum-based chemotherapy. METHODS: This trial was a phase 3, open-label, randomised controlled study conducted at 91 sites in 23 countries across Asia, Europe, North America, and South America. Eligible patients had stage IIIB or IV NSCLC in whom platinum-doublet chemotherapy was deemed unsuitable by the investigator due to an ECOG PS 2 or 3, or alternatively, being 70 years or older with an ECOG PS 0-1 with substantial comorbidities or contraindications for platinum-doublet chemotherapy. Patients were randomised 2:1 by permuted-block randomisation (block size of six) to receive 1200 mg of atezolizumab given intravenously every 3 weeks or single-agent chemotherapy (vinorelbine [oral or intravenous] or gemcitabine [intravenous]; dosing per local label) at 3-weekly or 4-weekly cycles. The primary endpoint was overall survival assessed in the intention-to-treat population. Safety analyses were conducted in the safety-evaluable population, which included all randomised patients who received any amount of atezolizumab or chemotherapy. This trial is registered with ClinicalTrials.gov, NCT03191786. FINDINGS: Between Sept 11, 2017, and Sept 23, 2019, 453 patients were enrolled and randomised to receive atezolizumab (n=302) or chemotherapy (n=151). Atezolizumab improved overall survival compared with chemotherapy (median overall survival 10·3 months [95% CI 9·4-11·9] vs 9·2 months [5·9-11·2]; stratified hazard ratio 0·78 [0·63-0·97], p=0·028), with a 2-year survival rate of 24% (95% CI 19·3-29·4) with atezolizumab compared with 12% (6·7-18·0) with chemotherapy. Compared with chemotherapy, atezolizumab was associated with stabilisation or improvement of patient-reported health-related quality-of-life functioning scales and symptoms and fewer grade 3-4 treatment-related adverse events (49 [16%] of 300 vs 49 [33%] of 147) and treatment-related deaths (three [1%] vs four [3%]). INTERPRETATION: First-line treatment with atezolizumab monotherapy was associated with improved overall survival, a doubling of the 2-year survival rate, maintenance of quality of life, and a favourable safety profile compared with single-agent chemotherapy. These data support atezolizumab monotherapy as a potential first-line treatment option for patients with advanced NSCLC who are ineligible for platinum-based chemotherapy. FUNDING: F Hoffmann-La Roche and Genentech Inc, a member of the Roche group.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Platino (Metal)/uso terapéutico , Calidad de Vida , Neoplasias Pulmonares/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
Breast Cancer Res ; 19(1): 44, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356166

RESUMEN

BACKGROUND: Breast cancer is a heterogeneous disease at the clinical and molecular level. In this study we integrate classifications extracted from five different molecular levels in order to identify integrated subtypes. METHODS: Tumor tissue from 425 patients with primary breast cancer from the Oslo2 study was cut and blended, and divided into fractions for DNA, RNA and protein isolation and metabolomics, allowing the acquisition of representative and comparable molecular data. Patients were stratified into groups based on their tumor characteristics from five different molecular levels, using various clustering methods. Finally, all previously identified and newly determined subgroups were combined in a multilevel classification using a "cluster-of-clusters" approach with consensus clustering. RESULTS: Based on DNA copy number data, tumors were categorized into three groups according to the complex arm aberration index. mRNA expression profiles divided tumors into five molecular subgroups according to PAM50 subtyping, and clustering based on microRNA expression revealed four subgroups. Reverse-phase protein array data divided tumors into five subgroups. Hierarchical clustering of tumor metabolic profiles revealed three clusters. Combining DNA copy number and mRNA expression classified tumors into seven clusters based on pathway activity levels, and tumors were classified into ten subtypes using integrative clustering. The final consensus clustering that incorporated all aforementioned subtypes revealed six major groups. Five corresponded well with the mRNA subtypes, while a sixth group resulted from a split of the luminal A subtype; these tumors belonged to distinct microRNA clusters. Gain-of-function studies using MCF-7 cells showed that microRNAs differentially expressed between the luminal A clusters were important for cancer cell survival. These microRNAs were used to validate the split in luminal A tumors in four independent breast cancer cohorts. In two cohorts the microRNAs divided tumors into subgroups with significantly different outcomes, and in another a trend was observed. CONCLUSIONS: The six integrated subtypes identified confirm the heterogeneity of breast cancer and show that finer subdivisions of subtypes are evident. Increasing knowledge of the heterogeneity of the luminal A subtype may add pivotal information to guide therapeutic choices, evidently bringing us closer to improved treatment for this largest subgroup of breast cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Análisis por Conglomerados , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/mortalidad , Variaciones en el Número de Copia de ADN , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Redes y Vías Metabólicas , Metabolómica/métodos , MicroARNs/genética , Noruega/epidemiología , Pronóstico , ARN Mensajero/genética
3.
Breast Cancer Res ; 17: 44, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25882602

RESUMEN

INTRODUCTION: Hypercoagulability in malignancy increases the risk of thrombosis, but is also involved in cancer progression. Experimental studies suggest that tissue factor (TF) and tissue factor pathway inhibitor (TFPI) are involved in cancer biology as a tumor- promoter and suppressor, respectively, but the clinical significance is less clear. Here, we aimed to investigate the clinical relevance of TF and TFPI genetic and phenotypic diversity in breast cancer. METHODS: The relationship between tumor messenger RNA (mRNA) expression and plasma levels of TF and TFPI (α and ß), tagging single nucleotide polymorphisms (tagSNPs) in F3 (TF) (n=6) and TFPI (n=18), and clinicopathological characteristics and molecular tumor subtypes were explored in 152 treatment naive breast cancer patients. The effect of tumor expressed TF and TFPIα and TFPIß on survival was investigated in a merged breast cancer dataset of 1881 patients. RESULTS: Progesterone receptor negative patients had higher mRNA expression of total TFPI (α+ß) (P=0.021) and TFPIß (P=0.014) in tumors. TF mRNA expression was decreased in grade 3 tumors (P=0.003). In plasma, total TFPI levels were decreased in patients with larger tumors (P=0.013). SNP haplotypes of TFPI, but not TF, were associated with specific clinicopathological characteristics like tumor size (odds ratio (OR) 3.14, P=0.004), triple negativity (OR 2.4, P=0.004), lymph node spread (OR 3.34, P=0.006), and basal-like (OR 2.3, P=0.011) and luminal B (OR 3.5, P=0.005) molecular tumor subtypes. Increased expression levels of TFPIα and TFPIß in breast tumors were associated with better outcome in all tumor subtypes combined (P=0.007 and P=0.005) and in multiple subgroups, including lymph node positive subjects (P=0.006 and P=0.034). CONCLUSIONS: This study indicates that genetic and phenotypic variation of both TFPIα and TFPIß, more than TF, are markers of cancer progression. Together with the previously demonstrated tumor suppressor effects of TFPI, the beneficial effect of tumor expressed TFPI on survival, renders TFPI as a potential anticancer agent, and the clinical significance of TFPI in cancer deserves further investigation.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Expresión Génica , Lipoproteínas/genética , Lipoproteínas/metabolismo , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Alelos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Femenino , Estudios de Asociación Genética , Genotipo , Haplotipos , Humanos , Lipoproteínas/sangre , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Fenotipo , Pronóstico , ARN Mensajero/genética , Tromboplastina/genética , Tromboplastina/metabolismo , Carga Tumoral
4.
Am J Pathol ; 183(4): 1064-1074, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23920327

RESUMEN

Triple-negative breast cancers (TNBCs) are a diverse and heterogeneous group of tumors that by definition lack estrogen and progesterone receptors and amplification of the HER2 gene. The majority of the tumors classified as TNBCs are highly malignant, and only a subgroup responds to conventional chemotherapy with a favorable prognosis. Results from decades of research have identified important molecular characteristics that can subdivide this group of breast cancers further. High-throughput molecular analyses including sequencing, pathway analyses, and integrated analyses of alterations at the genomic and transcriptomic levels have improved our understanding of the molecular alterations involved in tumor development and progression. How this knowledge should be used for rational selection of therapy is a challenging task and the subject of numerous ongoing research programs. This review summarizes the current knowledge on the clinical characteristics and molecular alterations of TNBCs. Currently used conventional therapeutic strategies and targeted therapy studies are discussed, with references to recently published results on the molecular characterization of TNBCs.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Mama Triple Negativas/terapia , Variaciones en el Número de Copia de ADN , Femenino , Inestabilidad Genómica , Humanos , Mutación/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
5.
BMC Cancer ; 14: 211, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24645668

RESUMEN

BACKGROUND: The aim was to assess and compare prognostic power of nine breast cancer gene signatures (Intrinsic, PAM50, 70-gene, 76-gene, Genomic-Grade-Index, 21-gene-Recurrence-Score, EndoPredict, Wound-Response and Hypoxia) in relation to ER status and follow-up time. METHODS: A gene expression dataset from 947 breast tumors was used to evaluate the signatures for prediction of Distant Metastasis Free Survival (DMFS). A total of 912 patients had available DMFS status. The recently published METABRIC cohort was used as an additional validation set. RESULTS: Survival predictions were fairly concordant across most signatures. Prognostic power declined with follow-up time. During the first 5 years of followup, all signatures except for Hypoxia were predictive for DMFS in ER-positive disease, and 76-gene, Hypoxia and Wound-Response were prognostic in ER-negative disease. After 5 years, the signatures had little prognostic power. Gene signatures provide significant prognostic information beyond tumor size, node status and histological grade. CONCLUSIONS: Generally, these signatures performed better for ER-positive disease, indicating that risk within each ER stratum is driven by distinct underlying biology. Most of the signatures were strong risk predictors for DMFS during the first 5 years of follow-up. Combining gene signatures with histological grade or tumor size, could improve the prognostic power, perhaps also of long-term survival.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Receptores de Estrógenos/genética , Neoplasias de la Mama/mortalidad , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Pronóstico , Receptores de Estrógenos/biosíntesis , Reproducibilidad de los Resultados , Tasa de Supervivencia/tendencias , Factores de Tiempo
6.
BMC Cancer ; 14: 845, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25407022

RESUMEN

BACKGROUND: The procoagulant state in cancer increases the thrombotic risk, but also supports tumor progression. To investigate the molecular mechanisms controlling cancer and hemostasis, we conducted a case-control study of genotypic and phenotypic variables of the tissue factor (TF) pathway of coagulation in breast cancer. METHODS: 366 breast cancer patients and 307 controls were genotyped for SNPs (n = 41) in the F2, F3 (TF), F5, F7, F10, TFPI and EPCR genes, and assayed for plasma coagulation markers (thrombin generation, activated protein C (APC) resistance, D-dimer, antithrombin, protein C, protein S, and TF pathway inhibitor (TFPI)). Associations with breast cancer were evaluated using logistic regression to obtain odds ratios (ORs) and 95% confidence intervals (CIs), or the chi-square test. RESULTS: Four SNPs in F5 (rs12120605, rs6427202, rs9332542 and rs6427199), one in F10 (rs3093261), and one in EPCR (rs2069948) were associated with breast cancer. EPCR rs2069948 was associated with estrogen receptor (ER) and progesterone receptor (PR) positivity, while the SNPs in F5 appeared to follow hormone receptor negative and triple negative patients. The prothrombotic polymorphisms factor V Leiden (rs6025) and prothrombin G20210A (rs1799963) were not associated with breast cancer. High APC resistance was associated with breast cancer in both factor V Leiden non-carriers (OR 6.5, 95% CI 4.1-10.4) and carriers (OR 38.3, 95% CI 6.2-236.6). The thrombin parameters short lag times (OR 5.8, 95% CI 3.7-9.2), short times to peak thrombin (OR 7.1, 95% CI 4.4-11.3), and high thrombin peak (OR 6.1, 95% CI 3.9-9.5) predicted presence of breast cancer, and high D-dimer also associated with breast cancer (OR 2.0, 95% CI 1.3-3.3). Among the coagulation inhibitors, low levels of antithrombin associated with breast cancer (OR 5.7, 95% CI 3.6-9.0). The increased coagulability was not explained by the breast cancer associated SNPs, and was unaffected by ER, PR and triple negative status. CONCLUSIONS: A procoagulant phenotype was found in the breast cancer patients. Novel associations with SNPs in F5, F10 and EPCR to breast cancer susceptibility were demonstrated, and the SNPs in F5 were confined to hormone receptor negative and triple negative patients. The study supports the importance of developing new therapeutic strategies targeting coagulation processes in cancer.


Asunto(s)
Antígenos CD/genética , Coagulación Sanguínea/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Factor V/genética , Factor X/genética , Polimorfismo Genético , Receptores de Superficie Celular/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Receptor de Proteína C Endotelial , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Hemostasis , Humanos , Desequilibrio de Ligamiento , Persona de Mediana Edad , Estadificación de Neoplasias , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Riesgo , Transducción de Señal , Tromboplastina/metabolismo
7.
PLoS Comput Biol ; 9(5): e1003047, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671412

RESUMEN

Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually. As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently. Understanding the difference in prognosis for breast cancer based on its molecular and phenotypic features is one avenue for improving treatment by matching the proper treatment with molecular subtypes of the disease. In this work, we employed a competition-based approach to modeling breast cancer prognosis using large datasets containing genomic and clinical information and an online real-time leaderboard program used to speed feedback to the modeling team and to encourage each modeler to work towards achieving a higher ranked submission. We find that machine learning methods combined with molecular features selected based on expert prior knowledge can improve survival predictions compared to current best-in-class methodologies and that ensemble models trained across multiple user submissions systematically outperform individual models within the ensemble. We also find that model scores are highly consistent across multiple independent evaluations. This study serves as the pilot phase of a much larger competition open to the whole research community, with the goal of understanding general strategies for model optimization using clinical and molecular profiling data and providing an objective, transparent system for assessing prognostic models.


Asunto(s)
Neoplasias de la Mama , Biología Computacional/métodos , Modelos Biológicos , Modelos Estadísticos , Análisis de Supervivencia , Algoritmos , Análisis por Conglomerados , Bases de Datos Factuales , Femenino , Perfilación de la Expresión Génica , Humanos , Pronóstico
8.
BMC Genomics ; 13: 591, 2012 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-23442169

RESUMEN

BACKGROUND: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. RESULTS: A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. CONCLUSIONS: The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.


Asunto(s)
Algoritmos , Variaciones en el Número de Copia de ADN , Linfoma Folicular/genética , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , ADN/genética , Dosificación de Gen , Genoma Humano , Inestabilidad Genómica , Humanos , Polimorfismo de Nucleótido Simple
9.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36450379

RESUMEN

In patients with previously treated advanced or metastatic non-small cell lung cancer (NSCLC), atezolizumab therapy improves survival with manageable safety. The open-label, single-arm phase III/IV TAIL study (NCT03285763) evaluated atezolizumab monotherapy in patients with previously treated NSCLC, including those with Eastern Cooperative Oncology Group performance status of 2, severe renal impairment, prior anti-programmed death 1 therapy, autoimmune disease, and age ≥75 years. Patients received atezolizumab intravenously (1200 mg) every 3 weeks. At data cut-off for final analysis, the median follow-up was 36.1 (range 0.0-42.3) months. Treatment-related (TR) serious adverse events (SAEs) and TR immune-related adverse events (irAEs) were the coprimary endpoints. Secondary endpoints included overall survival (OS), progression-free survival (PFS), overall response rate, and duration of response. Safety and efficacy in key patient subgroups were also assessed. TR SAEs and TR irAEs occurred in 8.0% and 9.4% of patients, respectively. No new safety signals were documented. In the overall population, median OS and PFS (95% CI) were 11.2 months (8.9 to 12.7) and 2.7 months (2.3 to 2.8), respectively. TAIL showed that atezolizumab has a similar risk-benefit profile in clinically diverse patients with previously treated NSCLC, which may guide treatment decisions for patients generally excluded from pivotal clinical trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Supervivencia sin Progresión
10.
BMC Cancer ; 11: 501, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22128823

RESUMEN

Molecular classification has added important knowledge to breast cancer biology, but has yet to be implemented as a clinical standard. Full sequencing of breast cancer genomes could potentially refine classification and give a more complete picture of the mutational profile of cancer and thus aid therapy decisions. Future treatment guidelines must be based on the knowledge derived from histopathological sub-classification of tumors, but with added information from genomic signatures when properly clinically validated. The objective of this article is to give some background on molecular classification, the potential of next generation sequencing, and to outline how this information could be implemented in the clinic.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Análisis de Secuencia de ADN/métodos , Neoplasias de la Mama/terapia , Femenino , Humanos , Datos de Secuencia Molecular
11.
Nat Commun ; 10(1): 525, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692535

RESUMEN

The original version of this Article omitted a declaration from the competing interests statement, which should have included the following: 'K.P.W. is President of Tempus Lab, Inc., Chicago, IL, USA'. This has now been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 9(1): 5397, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559362

RESUMEN

The original version of this Article contained an error in the author affiliations. The affiliation of Kevin P. White with Tempus Labs, Inc., Chicago, IL, USA was inadvertently omitted.This has now been corrected in both the PDF and HTML versions of the Article.

13.
Genome Med ; 10(1): 92, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30497530

RESUMEN

BACKGROUND: Chemotherapeutic agents such as anthracyclines and taxanes are commonly used in the neoadjuvant setting. Bevacizumab is an antibody which binds to vascular endothelial growth factor A (VEGFA) and inhibits its receptor interaction, thus obstructing the formation of new blood vessels. METHODS: A phase II randomized clinical trial of 123 patients with Her2-negative breast cancer was conducted, with patients treated with neoadjuvant chemotherapy (fluorouracil (5FU)/epirubicin/cyclophosphamide (FEC) and taxane), with or without bevacizumab. Serial biopsies were obtained at time of diagnosis, after 12 weeks of treatment with FEC ± bevacizumab, and after 25 weeks of treatment with taxane ± bevacizumab. A time course study was designed to investigate the genomic landscape at the three time points when tumor DNA alterations, tumor percentage, genomic instability, and tumor clonality were assessed. Substantial differences were observed with some tumors changing mainly between diagnosis and at 12 weeks, others between 12 and 25 weeks, and still others changing in both time periods. RESULTS: In both treatment arms, good responders (GR) and non-responders (NR) displayed significant difference in genomic instability index (GII) at time of diagnosis. In the combination arm, copy number alterations at 25 loci at the time of diagnosis were significantly different between the GR and NR. An inverse aberration pattern was also observed between the two extreme response groups at 6p22-p12 for patients in the combination arm. Signs of subclonal reduction were observed, with some aberrations disappearing and others being retained during treatment. Increase in subclonal amplification was observed at 6p21.1, a locus which contains the VEGFA gene for the protein which are targeted by the study drug bevacizumab. Of the 13 pre-treatment samples that had a gain at VEGFA, 12 were responders. Significant decrease of frequency of subclones carrying gains at 17q21.32-q22 was observed at 12 weeks, with the peak occurring at TMEM100, an ALK1 receptor signaling-dependent gene essential for vasculogenesis. This implies that cells bearing amplifications of VEGFA and TMEM100 are particularly sensitive to this treatment regime. CONCLUSIONS: Taken together, these results suggest that heterogeneity and subclonal architecture influence the response to targeted treatment in combination with chemotherapy, with possible implications for clinical decision-making and monitoring of treatment efficacy. TRIAL REGISTRATION: NCT00773695 . Registered 15 October 2008.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Terapia Neoadyuvante , Proliferación Celular , Femenino , Inestabilidad Genómica , Humanos , Factor A de Crecimiento Endotelial Vascular/genética
14.
Oncotarget ; 8(34): 57121-57133, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915659

RESUMEN

The tumor microenvironment is now widely recognized for its role in tumor progression, treatment response, and clinical outcome. The intratumoral immunological landscape, in particular, has been shown to exert both pro-tumorigenic and anti-tumorigenic effects. Identifying immunologically active or silent tumors may be an important indication for administration of therapy, and detecting early infiltration patterns may uncover factors that contribute to early risk. Thus far, direct detailed studies of the cell composition of tumor infiltration have been limited; with some studies giving approximate quantifications using immunohistochemistry and other small studies obtaining detailed measurements by isolating cells from excised tumors and sorting them using flow cytometry. Herein we utilize a machine learning based approach to identify lymphocyte markers with which we can quantify the presence of B cells, cytotoxic T-lymphocytes, T-helper 1, and T-helper 2 cells in any gene expression data set and apply it to studies of breast tissue. By leveraging over 2,100 samples from existing large scale studies, we are able to find an inherent cell heterogeneity in clinically characterized immune infiltrates, a strong link between estrogen receptor activity and infiltration in normal and tumor tissues, changes with genomic complexity, and identify characteristic differences in lymphocyte expression among molecular groupings. With our extendable methodology for capturing cell type specific signal we systematically studied immune infiltration in breast cancer, finding an inverse correlation between beneficial lymphocyte infiltration and estrogen receptor activity in normal breast tissue and reduced infiltration in estrogen receptor negative tumors with high genomic complexity.

15.
Nat Commun ; 8(1): 1221, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089486

RESUMEN

Homozygous deletions are rare in cancers and often target tumour suppressor genes. Here, we build a compendium of 2218 primary tumours across 12 human cancer types and systematically screen for homozygous deletions, aiming to identify rare tumour suppressors. Our analysis defines 96 genomic regions recurrently targeted by homozygous deletions. These recurrent homozygous deletions occur either over tumour suppressors or over fragile sites, regions of increased genomic instability. We construct a statistical model that separates fragile sites from regions showing signatures of positive selection for homozygous deletions and identify candidate tumour suppressors within those regions. We find 16 established tumour suppressors and propose 27 candidate tumour suppressors. Several of these genes (including MGMT, RAD17, and USP44) show prior evidence of a tumour suppressive function. Other candidate tumour suppressors, such as MAFTRR, KIAA1551, and IGF2BP2, are novel. Our study demonstrates how rare tumour suppressors can be identified through copy number meta-analysis.


Asunto(s)
Eliminación de Gen , Genes Supresores de Tumor , Neoplasias/genética , Alelos , Sitios Frágiles del Cromosoma/genética , Dosificación de Gen , Genoma Humano , Homocigoto , Humanos , Ploidias , Telómero/metabolismo
16.
Clin Cancer Res ; 23(16): 4662-4670, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28487444

RESUMEN

Purpose: Chemotherapy-induced alterations to gene expression are due to transcriptional reprogramming of tumor cells or subclonal adaptations to treatment. The effect on whole-transcriptome mRNA expression was investigated in a randomized phase II clinical trial to assess the effect of neoadjuvant chemotherapy with the addition of bevacizumab.Experimental Design: Tumor biopsies and whole-transcriptome mRNA profiles were obtained at three fixed time points with 66 patients in each arm. Altogether, 358 specimens from 132 patients were available, representing the transcriptional state before treatment start, at 12 weeks and after treatment (25 weeks). Pathologic complete response (pCR) in breast and axillary nodes was the primary endpoint.Results: pCR was observed in 15 patients (23%) receiving bevacizumab and chemotherapy and 8 patients (12%) receiving only chemotherapy. In the estrogen receptor-positive patients, 11 of 54 (20%) treated with bevacizumab and chemotherapy achieved pCR, while only 3 of 57 (5%) treated with chemotherapy reached pCR. In patients with estrogen receptor-positive tumors treated with combination therapy, an elevated immune activity was associated with good response. Proliferation was reduced after treatment in both treatment arms and most pronounced in the combination therapy arm, where the reduction in proliferation accelerated during treatment. Transcriptional alterations during therapy were subtype specific, and the effect of adding bevacizumab was most evident for luminal-B tumors.Conclusions: Clinical response and gene expression response differed between patients receiving combination therapy and chemotherapy alone. The results may guide identification of patients likely to benefit from antiangiogenic therapy. Clin Cancer Res; 23(16); 4662-70. ©2017 AACR.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/administración & dosificación , Bevacizumab/efectos adversos , Neoplasias de la Mama/genética , Quimioterapia Adyuvante , Neutropenia Febril/inducido químicamente , Femenino , Humanos , Hipertensión/inducido químicamente , Terapia Neoadyuvante , Proteinuria/inducido químicamente , Factores de Tiempo , Resultado del Tratamiento
18.
Nat Commun ; 7: 11479, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27161491

RESUMEN

The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.


Asunto(s)
Neoplasias de la Mama/genética , Mutación , Adulto , Anciano , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Variaciones en el Número de Copia de ADN , Femenino , Genes Supresores de Tumor , Estudios de Asociación Genética , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Transcriptoma
19.
PLoS One ; 10(10): e0139965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26460974

RESUMEN

WRAP53 protein controls intracellular trafficking of DNA repair proteins, the telomerase enzyme, and splicing factors. Functional loss of the protein has been linked to carcinogenesis, premature aging and neurodegeneration. The aim of this study was to investigate the prognostic significance of WRAP53 protein expression in breast cancer. A tissue microarray was constructed from primary breast tumors and immunostained by a polyclonal WRAP53 antibody to assess the protein expression pattern. Two different patient cohorts with long term follow-up were studied; a test- and a validation set of 154 and 668 breast tumor samples respectively. Breast cancer patients with tumor cells lacking the expression of WRAP53 in the nucleus had a significantly poorer outcome compared to patients with tumor cells expressing this protein in the nuclei (HR = 1.95, 95%CI = 1.09-3.51, p = 0.025). Nuclear localization of WRAP53 was further shown to be an independent marker of prognosis in multivariate analysis (HR = 2.57, 95%CI = 1.27-5.19, p = 0.008), and also significantly associated with better outcome in patients with TP53 mutation. Here we show that the sub-cellular localization of the WRAP53 protein has a significant impact on breast cancer survival, and thus has a potential as a clinical marker in diagnostics and treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Telomerasa/metabolismo , Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Chaperonas Moleculares , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Transporte de Proteínas , Fracciones Subcelulares
20.
Mol Cancer Res ; 13(3): 493-501, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25351767

RESUMEN

UNLABELLED: Lymphocytic infiltration is associated with better prognosis in several epithelial malignancies including breast cancer. The tumor suppressor TP53 is mutated in approximately 30% of breast adenocarcinomas, with varying frequency across molecular subtypes. In this study of 1,420 breast tumors, we tested for interaction between TP53 mutation status and tumor subtype determined by PAM50 and integrative cluster analysis. In integrative cluster 10 (IC10)/basal-like breast cancer, we identify an association between lymphocytic infiltration, determined by an expression score, and retention of wild-type TP53. The expression-derived score agreed with the degree of lymphocytic infiltration assessed by pathologic review, and application of the Nanodissect algorithm was suggestive of this infiltration being primarily of cytotoxic T lymphocytes (CTL). Elevated expression of this CTL signature was associated with longer survival in IC10/Basal-like tumors. These findings identify a new link between the TP53 pathway and the adaptive immune response in estrogen receptor (ER)-negative breast tumors, suggesting a connection between TP53 inactivation and failure of tumor immunosurveillance. IMPLICATIONS: The association of lymphocytic invasion of ER-negative breast tumors with the retention of wild-type TP53 implies a novel protective connection between TP53 function and tumor immunosurveillance.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T Citotóxicos/metabolismo , Proteína p53 Supresora de Tumor/genética , Biomarcadores/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Pérdida de Heterocigocidad , Pronóstico , Receptores de Estrógenos/genética , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA