Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375315

RESUMEN

Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.


Asunto(s)
Quinasa Idelta de la Caseína , Enfermedades Neurodegenerativas , Humanos , Regulación hacia Arriba , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores Purinérgicos P1/metabolismo , Receptor de Adenosina A2A/metabolismo
2.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458588

RESUMEN

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Antagonistas de Receptores Purinérgicos P1 , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Purinas/química , Receptor de Adenosina A2A/metabolismo , Relación Estructura-Actividad
3.
Molecules ; 26(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672225

RESUMEN

Alzheimer's, Parkinson's, and multiple sclerosis are neurodegenerative diseases related by neuronal degeneration and death in specific areas of the central nervous system. These pathologies are associated with neuroinflammation, which is involved in disease progression, and halting this process represents a potential therapeutic strategy. Evidence suggests that microglia function is regulated by A1 and A2A adenosine receptors (AR), which are considered as neuroprotective and neurodegenerative receptors, respectively. The manuscript's aim is to elucidate the role of these receptors in neuroinflammation modulation through potent and selective A1AR agonists (N6-cyclopentyl-2'- or 3'-deoxyadenosine substituted or unsubstituted in 2 position) and A2AAR antagonists (9-ethyl-adenine substituted in 8 and/or in 2 position), synthesized in house, using N13 microglial cells. In addition, the combined therapy of A1AR agonists and A2AAR antagonists to modulate neuroinflammation was evaluated. Results showed that A1AR agonists were able, to varying degrees, to prevent the inflammatory effect induced by cytokine cocktail (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and interferon (IFN)-γ), while A2AAR antagonists showed a good ability to counteract neuroinflammation. Moreover, the effect achieved by combining the two most effective compounds (1 and 6) in doses previously found to be non-effective was greater than the treatment effect of each of the two compounds used separately at maximal dose.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Inflamación/tratamiento farmacológico , Receptor de Adenosina A1/metabolismo , Receptores de Adenosina A2/metabolismo , Animales , Células Cultivadas , Inflamación/metabolismo , Ratones
4.
Bioorg Med Chem Lett ; 30(11): 127126, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32241719

RESUMEN

In this work, further structural investigations on the 8-amino-2-phenyl-6-aryl-1,2,4-triazolo[4,3-a]pyrazin-3-one series were carried out to achieve potent and selective human A2A adenosine receptor (AR) antagonists. Different ether and amide moieties were attached at the para-position of the 6-phenyl ring, thus leading to compounds 1-9 and 10-18, respectively. Most of these moieties contained terminal basic rings (pyrrolidine, morpholine, piperidine and substituted piperazines) which were thought to confer good physicochemical and drug-like properties. Compounds 11-16, bearing the amide linker, possessed high affinity and selectivity for the hA2A AR (Ki = 3.6-11.8 nM). Also derivatives 1-9, featuring an ether linker, preferentially targeted the hA2A AR but with lower affinity, compared to those of the relative amide compounds. Docking studies, carried out at the hA2A AR binding site, highlighted some crucial ligand-receptor interactions, particularly those provided by the appended substituent whose nature deeply affected hA2A AR affinity.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/química , Pirazinas/química , Receptor de Adenosina A2A/química , Triazoles/química , Antagonistas del Receptor de Adenosina A2/metabolismo , Sitios de Unión , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazinas/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Relación Estructura-Actividad
5.
J Neurochem ; 149(2): 211-230, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30614535

RESUMEN

Cerebral ischemia is the second most common cause of death and a major cause of disability worldwide. Available therapies are based only on anticoagulants or recombinant tissue plasminogen activator. Extracellular adenosine increases during ischemia and acts as a neuroprotective endogenous agent mainly by activating adenosine A1 receptors (A1 Rs) which control calcium influx, glutamate release, membrane potential, and metabolism. Accordingly, in many experimental paradigms it has been already demonstrated that the stimulation of A1 R with full agonists is able to reduce ischemia-related structural and functional brain damage; unfortunately, cardiovascular side effects and desensitization of A1 R induced by these compounds have strongly limited their exploitation in stroke therapy so far. Among the newly emerging compounds, A1 R partial agonists could be almost free of side effects and equally effective. Therefore, we decided to evaluate the neuroprotective potential of two A1 R partial agonists, namely 2'-dCCPA and 3'-dCCPA, in in vitro and ex vivo experimental models of cerebral ischemia. Within the experimental paradigm of oxygen-glucose deprivation in vitro in human neuroblastoma (SH-SY5Y) cells both A1 R partial agonists increased cell viability. Considering the high level of expression of A1 Rs in the hippocampus and the susceptibility of CA1 region to hypoxia, we performed electrophysiological experiments in this subfield. The application of 7 min of oxygen-glucose deprivation constantly produces an irreversible synaptic failure in all the C57Bl/6 mice hippocampal slices evaluated; both tested compounds allowed a significant recovery of synaptic transmission. These findings demonstrate that A1 R and its partial agonists are still of interest for cerebral ischemia therapy. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Isquemia Encefálica , Fármacos Neuroprotectores/farmacología , Animales , Hipocampo/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Receptor de Adenosina A1/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
6.
Bioorg Med Chem Lett ; 29(4): 563-569, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30638876

RESUMEN

This paper describes the synthesis of novel 7-amino-thiazolo[5,4-d]pyrimidines bearing different substituents at positions 2, 5 and 7 of the thiazolopyrimidine scaffold. The synthesized compounds 2-27 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B and A2A) assays, in order to evaluate their affinity and potency at human adenosine receptor subtypes. The current study allowed us to support that affinity and selectivity of 7-amino-thiazolo[5,4-d]pyrimidine derivatives towards the adenosine receptor subtypes can be modulated by the nature of the groups attached at positions 2, 5 and 7 of the bicyclic scaffold. To rationalize the hypothetical binding mode of the newly synthesized compounds, we also performed docking calculations in human A2A, A1 and A3 structures.


Asunto(s)
Antagonistas de Receptores Purinérgicos P1/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Tiazoles/química , Animales , Células CHO , Cricetulus , Humanos , Simulación del Acoplamiento Molecular , Antagonistas de Receptores Purinérgicos P1/química , Pirimidinas/química , Ensayo de Unión Radioligante , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 27(15): 3328-3333, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31230970

RESUMEN

In recent years, special attention has been paid to the A3 adenosine receptor (A3AR) as a possible pharmacological target to treat intestinal inflammation. In this work, it was set up a novel method to quantify the concentration of a promising anti-inflammatory agent inside and outside of intestinal barrier using the everted gut sac technique. The compound chosen for the present study is one of the most potent and selective A3AR agonist reported so far, named AR 170 (N6-methyl-2-phenylethynyl-5'-N-methylcarboxamidoadenosine). In order to evaluate the intestinal absorption of AR 170 the radioligand binding assay in comparison with HPLC-DAD was used. Results showed that the compound is absorbed via passive diffusion by paracellular pathway. The concentrations determined in the serosal (inside the sac) fluid by radioligand binding assay are in good agreement with those obtained through the widely used HPLC/MS protocol, demonstrating the reliability of the method. It is worthwhile to note that the radioligand binding assay allows detecting very low concentrations of analyte, thus offering an excellent tool to measure the intestinal absorption of receptor ligands. Moreover, the AR 170 quantity outside the gut sac and the interaction with A3AR could presuppose good topical anti-inflammatory effects of this compound.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/farmacología , Antiinflamatorios no Esteroideos/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Receptor de Adenosina A3/metabolismo , Adenosina/análisis , Adenosina/química , Agonistas del Receptor de Adenosina A3/química , Animales , Antiinflamatorios no Esteroideos/química , Células CHO , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Mucosa Intestinal/metabolismo , Ligandos , Masculino , Estructura Molecular , Ratas , Ratas Wistar , Relación Estructura-Actividad
8.
Bioorg Chem ; 92: 103183, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446240

RESUMEN

Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/síntesis química , Antagonistas del Receptor de Adenosina A2/metabolismo , Purinas/síntesis química , Purinas/metabolismo , Receptor de Adenosina A2A/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Humanos , Ligandos , Masculino , Modelos Moleculares , Estructura Molecular , Unión Proteica , Ensayo de Unión Radioligante , Ratas Wistar , Relación Estructura-Actividad
9.
Bioorg Chem ; 87: 380-394, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913470

RESUMEN

In this work, an enlarged series of 1,2,4-triazolo[4,3-a]pyrazin-3-ones was designed to target the human (h) A2A adenosine receptor (AR) or both hA1 and hA2A ARs. The novel 8-amino-1,2,4-triazolopyrazin-3-one derivatives 1-25 featured a phenyl or a benzyl pendant at position 2 while different aryl/heteroaryl substituents were placed at position 6. Two compounds (8 and 10) endowed with high affinity (Ki = 7.2 and 10.6 nM) and a complete selectivity for the hA2A AR were identified. Moreover, several derivatives possessed nanomolar affinity for both hA1 and hA2A ARs (both Ki < 20 nM) and different degrees of selectivity versus the hA3 AR. Two selected compounds (10 and 25) demonstrated ability in preventing ß-amyloid peptide (25-35)-induced neurotoxicity in SH-SY5Y cells. Results of docking studies at the hA2A and hA1 AR crystal structures helped us to rationalize the observed affinity data and to highlight that the steric hindrance of the substituents at the 2- and 6-position of the bicyclic core affects the binding mode in the receptor cavity.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Sustancias Protectoras/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Piridinas/farmacología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Triazoles/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Células CHO , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Sustancias Protectoras/síntesis química , Sustancias Protectoras/química , Antagonistas de Receptores Purinérgicos P1/síntesis química , Antagonistas de Receptores Purinérgicos P1/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
10.
Purinergic Signal ; 13(1): 61-74, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27757785

RESUMEN

Blocking membrane currents evoked by the activation of purinergic P2X3 receptors localized on nociceptive neurons represents a promising strategy for the development of agents useful for the treatment of chronic pain conditions. Among compounds endowed with such antagonistic action, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) is an ATP analogue, whose inhibitory activity on P2X receptors has been previously reported. Based on the results of molecular modelling studies performed with homology models of the P2X3 receptor, novel adenosine nucleotide analogues bearing cycloalkyl or arylalkyl substituents replacing the trinitrophenyl moiety of TNP-ATP were designed and synthesized. These new compounds were functionally evaluated on native P2X3 receptors from mouse trigeminal ganglion (TG) sensory neurons using patch clamp recordings under voltage clamp configuration. Our data show that some of these molecules are potent (nanomolar range) and reversible inhibitors of P2X3 receptors, without any apparent effect on trigeminal GABAA and 5-HT3 receptors, whose membrane currents were unaffected by the tested compounds.


Asunto(s)
Analgésicos/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Ganglio del Trigémino/efectos de los fármacos , Adenosina Trifosfato/análogos & derivados , Animales , Ratones , Modelos Moleculares , Técnicas de Placa-Clamp , Células Receptoras Sensoriales/metabolismo
11.
Med Sci Monit ; 23: 953-959, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28223679

RESUMEN

GPR17 is believed to be a novel target for the development of new therapeutic approaches to human stroke and multiple sclerosis. Hence, the selection of GPR17 ligands may be a potent way to reduce the progression of ischemic damage. New potential ligands for GPR17, mono-, di-, and triphosphate adenosine nucleotides substituted at N6-position with a methyl and a cyclopentyl group were synthesized. The ability of new ligands to bind GPR17 was evaluated using frontal affinity chromatography-mass spectrometry (FAC-MS) method. Cangrelor, MRS2179, and uridine diphosphate were selected as the reference compounds. The new triphosphate derivatives 9 and 10 were considered as the new GPR17 ligands. The compound 10 was eluted with breakthrough time (bt) between cangrelor and MRS 2179 (compound 10, bt=12.25; cangrelor, bt=24.55, and MRS 2179, bt=7.10), while the breakthrough volume of compound 9 was similar to that of MRS 2179 (compound 9, bt=7.53 and MRS 2179, bt=7.10). N6-cyclopentyATP 10 is medium-high affinity ligand of GPR17, while the corresponding N6-methyl derivative 9 is a medium affinity ligand similar to MRS 2179. Hence, the new N6-cyclopentylATP 10 might be a good candidate for the pharmacological characterization of GPR17.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/síntesis química , Adenosina Difosfato/química , Adenosina Difosfato/farmacología , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Sitios de Unión , Cromatografía de Afinidad , Humanos , Proteínas Inmovilizadas/química , Ligandos , Modelos Moleculares , Unión Proteica , Receptores Acoplados a Proteínas G/biosíntesis
12.
Bioorg Med Chem ; 24(12): 2794-808, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27161878

RESUMEN

A new series of 7-aminopyrazolo[4,3-d]pyrimidine derivatives (1-31) were synthesized to evaluate some structural modifications at the 2- and 5-positions aimed at shifting affinity towards the human (h) A2A adenosine receptor (AR) or both hA2A and hA1 ARs. The most active compounds were those featured by a 2-furyl or 5-methylfuran-2-yl moiety at position 5, combined with a benzyl or a substituted-benzyl group at position 2. Several of these derivatives (22-31) displayed nanomolar affinity for the hA2A AR (Ki=3.62-57nM) and slightly lower for the hA1 ARs, thus showing different degrees (3-22 fold) of hA2A versus hA1 selectivity. In particular, the 2-(2-methoxybenzyl)-5-(5-methylfuran-2-yl) derivative 25 possessed the highest hA2A and hA1 AR affinities (Ki=3.62nM and 18nM, respectively) and behaved as potent antagonist at both these receptors (cAMP assays). Its 2-(2-hydroxybenzyl) analog 26 also showed a high affinity for the hA2A AR (Ki=5.26nM) and was 22-fold selective versus the hA1 subtype. Molecular docking investigations performed at the hA2A AR crystal structure and at a homology model of the hA1 AR allowed us to represent the hypothetical binding mode of our derivatives and to rationalize the observed SARs.


Asunto(s)
Antagonistas de Receptores Purinérgicos P1/química , Antagonistas de Receptores Purinérgicos P1/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Aminación , Humanos , Simulación del Acoplamiento Molecular , Pirazoles/química , Pirazoles/farmacología
13.
J Neurochem ; 134(4): 740-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25962878

RESUMEN

The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2A R) represent major non-dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6-hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), and two A2A R antagonists, (E)-phosphoric acid mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl] (MSX-3) and 8-ethoxy-9-ethyladenine (ANR 94). Chronic treatment with MPEP or MSX-3 alone, but not with ANR 94, reduced the toxin-induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX-3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX-3 given alone significantly potentiated L-DOPA-induced turning behavior. Combination of either A2A R antagonists with MPEP synergistically increased L-DOPA-induced turning. This effect was dose-dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co-treatment with A2A R and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non-dopaminergic PD treatment using low drug concentration and establishes the basis for in-depth studies to identify optimal doses at which these drugs reach highest efficacy. Combined treatment with low concentrations of known adenosine A2A receptor (A2A R) and metabotropic glutamate receptor (mGluR5) antagonists results in a therapeutic benefit and provides better results than those produced by either drug given alone, both in terms of motor performance and neuroprotection. Future trials should involve careful optimization of drug combinations and concentrations that may avoid the emergence of debilitating side effects and slow-down/revert disease progression.


Asunto(s)
Levodopa/administración & dosificación , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Antagonistas de Receptores Purinérgicos P1/administración & dosificación , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Adenina/administración & dosificación , Adenina/análogos & derivados , Animales , Sistemas de Liberación de Medicamentos/métodos , Sinergismo Farmacológico , Masculino , Neuronas/efectos de los fármacos , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/psicología , Piridinas/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Rotación , Resultado del Tratamiento , Xantinas/administración & dosificación
14.
Bioorg Med Chem ; 23(1): 9-21, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25497490

RESUMEN

The 1,2,4-triazolo[1,5-a]quinoxaline (TQX) scaffold was extensively investigated in our previously reported studies and recently, our attention was focused at position 5 of the tricyclic nucleus where different acyl and carboxylate moieties were introduced (compounds 2-15). This study produced some interesting compounds endowed with good hA3 receptor affinity and selectivity. In addition, to find new insights about the structural requirements for hA3 receptor-ligand interaction, the tricyclic TQX ring was destroyed yielding some 1,2,4-triazole derivatives (compounds 16-23). These simplified compounds, though maintaining the crucial structural requirements for adenosine receptor-ligand interaction, have a very low hA3 adenosine receptor affinity, the only exception being compound 23 (1-[3-(4-methoxyphenyl)-1-phenyl-1H-1,2,4-triazol-5-yl]-3-phenylurea) endowed with a Ki value in the micro-molar range and high hA3 selectivity versus both hA1 and hA2A AR subtypes. Evaluation of the side products obtained in the herein reported synthetic pathways led to the identification of some new triazolo[1,5-a]quinoxalines as hA3AR antagonists (compounds 24-27). These derivatives, though lacking the classical structural requirements for the anchoring at the hA3 receptor site, show high hA3 affinity and in some case selectivity versus hA1 and hA2A subtypes. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA3 receptor.


Asunto(s)
Antagonistas del Receptor de Adenosina A3/química , Quinoxalinas/química , Antagonistas del Receptor de Adenosina A3/síntesis química , Animales , Sitios de Unión , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos , Ligandos , Modelos Moleculares , Quinoxalinas/síntesis química , Quinoxalinas/farmacología , Relación Estructura-Actividad
15.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675428

RESUMEN

Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.

16.
Anal Bioanal Chem ; 405(2-3): 837-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22960794

RESUMEN

A liquid chromatographic stationary phase containing immobilized membranes from cells expressing A(2A) adenosine receptor (A(2A)AR) is firstly described. Cellular membranes from CHO cells stably transfected with human A(2A)AR vector (A(2A)(+)) and from the same cell line transfected with the corresponding empty vector (A(2A)(-)) were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6 mm I.D. glass columns to create A(2A)(+)-IAM and A(2A)(-)-IAM stationary phases. Frontal chromatography experiments on both A(2A)(+)-IAM and A(2A)(-)-IAM columns demonstrated the presence of a low specific interaction with the receptor. However, immobilized A(2A) retained its ability to specifically bind known ligands as demonstrated by the agreement of the calculated K(d) values with two different chromatographic protocols in comparison to previously reported data. In order to maximize the specific interaction, the same cellular membranes were immobilized on the inner surface of a silica capillary (40 cm × 100 µm I.D.) by non-covalent interactions using the avidin-biotin coupling system to create two open tubular columns A(2A)(+)-OT and A(2A)(-)-OT. The open tubular system was characterized by ranking experiments for affinity studies in mixture useful for the selection of new potential candidates.


Asunto(s)
Cromatografía de Afinidad/instrumentación , Receptor de Adenosina A2A/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Células CHO , Cromatografía de Afinidad/métodos , Cricetinae , Humanos , Cinética , Ligandos , Espectrometría de Masa por Ionización de Electrospray/instrumentación
17.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37259317

RESUMEN

Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 µM and KiA2A = 0.076 µM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein-ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases.

18.
Behav Pharmacol ; 23(5-6): 567-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22743606

RESUMEN

The present study examined the effect of two A(2A) adenosine receptor (AR) agonists, CGS 21680 and VT 7, on high-palatability food (HPF) intake in a model of binge eating in sated rats and on low-palatability food (LPF) intake in food-deprived rats. Binge eating was induced in female rats by three 8-day cycles of food restriction/refeeding, followed by acute stress. Two groups of rats were used: NR+NS rats normally fed and not stressed and R+S rats exposed to cycles of food restriction/refeeding and then stressed. R+S rats had higher intake of HPF than the NR+NS controls. The two A(2A)AR agonists were tested at doses of 0.1 and 0.05 mg/kg intraperitoneally; VT 7 did not modify locomotor activity at either dose, whereas CGS 21680 only slightly reduced it at the higher dose tested. The injection of 0.1 mg/kg of both agonists markedly reduced HPF intake both in R+S and in NR+NS rats. The dose of 0.05 mg/kg was inactive. CGS 21680 and VT 7, 0.1 mg/kg, also reduced the standard LPF intake in 24 h food-deprived rats; however, they did not reduce water intake, indicating that their effect on food intake is selective. The dose of 0.05 mg/kg was inactive. Thus, A(2A)AR agonists exert a rather general effect on food intake, inhibiting both HPF intake in sated rats and LPF intake in food-deprived rats. They may potentially be useful pharmacological agents to control binge-related eating disorders and to reduce food overconsumption associated with obesity.


Asunto(s)
Agonistas del Receptor de Adenosina A2/uso terapéutico , Adenosina/análogos & derivados , Depresores del Apetito/uso terapéutico , Trastorno por Atracón/tratamiento farmacológico , Conducta Alimentaria/efectos de los fármacos , Fenetilaminas/uso terapéutico , Receptor de Adenosina A2A/metabolismo , Tionucleósidos/uso terapéutico , Adenosina/administración & dosificación , Adenosina/uso terapéutico , Agonistas del Receptor de Adenosina A2/administración & dosificación , Animales , Depresores del Apetito/administración & dosificación , Regulación del Apetito/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Ingestión de Energía/efectos de los fármacos , Femenino , Preferencias Alimentarias , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Fenetilaminas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/química , Respuesta de Saciedad/efectos de los fármacos , Tionucleósidos/administración & dosificación
19.
Proc Natl Acad Sci U S A ; 106(37): 15927-31, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19721003

RESUMEN

We previously found that the endogenous anticonvulsant adenosine, acting through A(2A) and A(3) adenosine receptors (ARs), alters the stability of currents (I(GABA)) generated by GABA(A) receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of I(GABA) expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABA(A) receptors revealed instability, manifested by a large I(GABA) rundown, which in most of the oocytes (approximately 70%) was obviously impaired by the new A(2A) antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A(3) receptor antagonist (ANR235) significantly improved I(GABA) stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered I(GABA) rundown on ANR94 treatment. Our findings indicate that antagonizing A(2A) and A(3) receptors increases the I(GABA) stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy.


Asunto(s)
Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A3/metabolismo , Receptores de GABA-A/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Antagonistas del Receptor de Adenosina A2 , Antagonistas del Receptor de Adenosina A3 , Animales , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Femenino , Humanos , Técnicas In Vitro , Malformaciones del Desarrollo Cortical/metabolismo , Oocitos/metabolismo , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Xenopus laevis
20.
Biofactors ; 48(5): 1027-1035, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35979986

RESUMEN

Skin aging is a complex biological process. Skin aspect is considered as a sign of well-being and of beauty. In view of this, noninvasive and/or minimally invasive anti-aging strategies were developed. Adenosine, a well-known nucleoside, may play a role in skin rejuvenation. Adenosine receptors belong to the G protein-coupled receptors superfamily and are divided into four subtypes: A1 , A2A , A2B , and A3 . The adenosine receptors expressed by skin are mainly the A1 and A2A subtypes. In the hypodermis, adenosine through the A1 receptor stimulates lipogenesis and adipogenesis. In the dermis, adenosine through the A2A receptor subtype stimulates collagen production. Moreover, the nucleoside increases new DNA synthesis and subsequently protein synthesis in dermal cells. Activation of adenosine receptors by interacting with various skin layers may induce a decrease in the amount of wrinkles, roughness, dryness, and laxity. This article has reviewed the mechanisms through which adenosine modulates biological mechanisms in the skin tissues and the effect of preparations containing adenosine or its derivatives on the skin.


Asunto(s)
Adenosina , Envejecimiento de la Piel , Adenosina/farmacología , Colágeno , ADN , Nucleósidos/farmacología , Receptor de Adenosina A2A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA